【扫盲】什么是模型推理(model inference)

这篇具有很好参考价值的文章主要介绍了【扫盲】什么是模型推理(model inference)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

举几个对推理性能有强要求的场景例子:

(1)在公共安全领域中,视频监控中实时的人脸识别需要有实时的展示能力方便执法人员快速定位跟踪人员。
(2)在互联网应用领域中,电商网站、内容应用实时的个性化推荐要求能够快速响应,推荐的卡顿感将直接影响购物或者内容获取的体验。
(3)在银行领域中,电子支付中异常交易的实时识别也至关重要,任何异常的交易需要被快速识别并拦截,而正常的交易则不能被影响。
(4)在金融领域中,量化模型毫秒级的交易判断输出能帮助华尔街的交易员们套取巨额利润。

从上面的例子不难发现,其实在不同的领域的场景下,推理的性能都是模型表现之外最关注的点,在某些极端的场景,数据科学家和机器学习工程师甚至愿意牺牲一部分的模型表现来换取更高的推理性能。

了解更多:浅谈机器学习模型推理性能优化

———————————————————————————————————————

训练(training)vs推理(inference)
训练是通过从已有的数据中学习到某种能力;
推理是简化并使用该能力,使其能快速、高效地对未知的数据进行操作,以获得预期的结果。
模型推理,扫盲,python,开发语言,后端,机器学习,人工智能
训练是计算密集型操作,模型一般都需要使用大量的数据来进行训练,通过反向传播来不断的优化模型的参数,以使得模型获取某种能力。在训练的过程中,我们常常是将模型在数据集上面的拟合情况放在首要位置的。

推理过程在很多场景下,除了模型的精度外,还更加关注模型的大小和速度等指标。
这就需要对训练的模型进行一些压缩、剪枝或者是操作上面的计算优化。

了解更多:模型推理部署——基础概念篇文章来源地址https://www.toymoban.com/news/detail-647652.html

到了这里,关于【扫盲】什么是模型推理(model inference)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LLMs之llama_7b_qlora:源代码解读inference.py(基于合并后的权重文件进行模型推理)将基于之前合并Lora模型权重后的hl_llama_7b模型进行文本生成(基于用户交互输入

    LLMs之llama_7b_qlora:源码解读inference.py(基于合并后的权重文件进行模型推理)将基于之前合并Lora模型权重后的hl_llama_7b模型进行文本生成(基于用户交互输入的上下文生成新文本) 目录

    2024年02月16日
    浏览(47)
  • LLMs之llama_7b_qlora:源代码解读inference_qlora.py(模型推理)使用LORA权重来初始化预训练的LLAMA模型来进行文本生成(基于用户交互输入的上下文生成新文本)

    LLMs之llama_7b_qlora:源码解读inference_qlora.py(模型推理)使用LORA权重来初始化预训练的LLAMA模型来进行文本生成(基于用户交互输入的上下文生成新文本) 目录

    2024年02月15日
    浏览(74)
  • LangChain大型语言模型(LLM)应用开发(一):Models, Prompts and Output Parsers

    LangChain是一个基于大语言模型(如ChatGPT)用于构建端到端语言模型应用的 Python 框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,以便在不同的

    2024年02月16日
    浏览(43)
  • 大型语言模型的推理演算

    作者 |kipply 翻译|杨婷、徐佳渝、贾川 ‍‍ 本文详细阐述了大型语言模型推理性能的几个基本原理,不含任何实验数据或复杂的数学公式,旨在加深读者对相关原理的理解。此外,作者还提出了一种极其简单的推理时延模型,该模型与实证结果拟合度高,可更好地预测和解

    2023年04月16日
    浏览(47)
  • 掌握大语言模型技术: 推理优化

    堆叠 Transformer 层来创建大型模型可以带来更好的准确性、少样本学习能力,甚至在各种语言任务上具有接近人类的涌现能力。 这些基础模型的训练成本很高,并且在推理过程中可能会占用大量内存和计算资源(经常性成本)。 当今最流行的大型语言模型 (LLM) 的参数大小可以

    2024年01月22日
    浏览(52)
  • 大语言模型推理与部署工具介绍

    本项目中的相关模型主要支持以下量化、推理和部署方式,具体内容请参考对应教程。 工具 特点 CPU GPU 量化 GUI API vLLM§ 16K‡ 教程 llama.cpp 丰富的量化选项和高效本地推理 ✅ ✅ ✅ ❌ ✅ ❌ ✅ link 🤗Transformers 原生transformers推理接口 ✅ ✅ ✅ ✅ ❌ ✅ ✅ link Colab Demo 在Colab中

    2024年02月09日
    浏览(39)
  • Qt扫盲-Model/View入门

    每个UI开发人员都应该了解ModelView编程, 表格格控件、列表格控件和树控件是gui中经常使用的组件。这些控件有两种不同的方式访问它们的数据。 1.传统方法 传统的方法就是让控件本身去储存数据,在控件内部有数据容器,这种方法非常直观,但是,在许多重要的应用程序中

    2024年02月13日
    浏览(48)
  • 大语言模型推理提速:TensorRT-LLM 高性能推理实践

    作者:顾静 大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有 self-attention 的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。 当前

    2024年01月25日
    浏览(62)
  • LISA:通过大语言模型进行推理分割

    论文:https://arxiv.org/pdf/2308.00692 代码:GitHub - dvlab-research/LISA  尽管感知系统近年来取得了显著的进步,但在执行视觉识别任务之前,它们仍然依赖于明确的人类指令来识别目标物体或类别。这样的系统缺乏主动推理和理解隐含用户意图的能力。在这项工作中,我们提出了一种

    2024年02月14日
    浏览(42)
  • 语言模型和人类的推理都依赖内容

    人类不太擅长逻辑,需要依赖内容直觉进行推理。许多认知研究表明,人类的推理并不是完全抽象的(不是完全的形式与内容分离)。 相反,我们的推理取决于问题的内容: 当内容支持逻辑推理时,我们回答得更准确, 当内容和逻辑冲突时,我们会犯更多的错误。 这篇论文

    2024年02月06日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包