Rust 复数运算,重载加减乘除运算

这篇具有很好参考价值的文章主要介绍了Rust 复数运算,重载加减乘除运算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Rust 复数运算,重载加减乘除运算,Rust,算法,rust

复数

基本概念

复数定义

由实数部分和虚数部分所组成的数,形如a+bi 。

其中a、b为实数,i 为“虚数单位”,i² = -1,即虚数单位的平方等于-1。

a、b分别叫做复数a+bi的实部和虚部。

当b=0时,a+bi=a 为实数;
当b≠0时,a+bi 又称虚数;
当b≠0、a=0时,bi 称为纯虚数。

实数和虚数都是复数的子集。如同实数可以在数轴上表示一样复数也可以在平面上表示,复数x+yi以坐标点(x,y)来表示。表示复数的平面称为“复平面”。

复数相等

两个复数不能比较大小,但当个两个复数的实部和虚部分别相等时,即表示两个复数相等。

共轭复数

如果两个复数的实部相等,虚部互为相反数,那么这两个复数互为共轭复数。

复数的模

复数的实部与虚部的平方和的正的平方根的值称为该复数的模,数学上用与绝对值“|z|”相同的符号来表示。虽然从定义上是不相同的,但两者的物理意思都表示“到原点的距离”。

复数的四则运算

加法(减法)法则

复数的加法法则:设z1=a+bi,z2 =c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

即(a+bi)±(c+di)=(a±c)+(b±d)

乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i²=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

即(a+bi)(c+di)=(ac-bd)+(bc+ad)i

除法法则

复数除法法则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。

运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。

即(a+bi)/(c+di)=(a+bi)(c-di)/(c*c+d*d)=[(ac+bd)+(bc-ad)i]/(c*c+d*d)

复数的Rust代码实现

结构定义

Rust语言中,没有像python一样内置complex复数数据类型,我们可以用两个浮点数分别表示复数的实部和虚部,自定义一个结构数据类型,表示如下:

struct Complex {
    real: f64,
    imag: f64,
}

示例代码:

#[derive(Debug)]
struct Complex {
    real: f64,
    imag: f64,
}

impl Complex {  
    fn new(real: f64, imag: f64) -> Self {
        Complex { real, imag }  
    }
}

fn main() {  
    let z = Complex::new(3.0, 4.0);
    println!("{:?}", z);
    println!("{} + {}i", z.real, z.imag);
}

注意:#[derive(Debug)] 自动定义了复数结构的输出格式,如以上代码输出如下:

Complex { real: 3.0, imag: 4.0 }
3 + 4i

重载四则运算

复数数据结构不能直接用加减乘除来做复数运算,需要导入标准库ops的运算符:

use std::ops::{Add, Sub, Mul, Div, Neg};

Add, Sub, Mul, Div, Neg 分别表示加减乘除以及相反数,类似C++或者python语言中“重载运算符”的概念。

根据复数的运算法则,写出对应代码:

fn add(self, other: Complex) -> Complex {
    Complex {
        real: self.real + other.real,
        imag: self.imag + other.imag,
    }  
}  

fn sub(self, other: Complex) -> Complex {
    Complex {  
        real: self.real - other.real,
        imag: self.imag - other.imag,
    }  

fn mul(self, other: Complex) -> Complex {  
    let real = self.real * other.real - self.imag * other.imag;
    let imag = self.real * other.imag + self.imag * other.real;
    Complex { real, imag }  
}  

fn div(self, other: Complex) -> Complex {
    let real = (self.real * other.real + self.imag * other.imag) / (other.real * other.real + other.imag * other.imag);
    let imag = (self.imag * other.real - self.real * other.imag) / (other.real * other.real + other.imag * other.imag);
    Complex { real, imag }
}

fn neg(self) -> Complex {
    Complex {
        real: -self.real,
        imag: -self.imag,
    }
}

Rust 重载运算的格式,请见如下示例代码:

use std::ops::{Add, Sub, Mul, Div, Neg};

#[derive(Clone, Debug, PartialEq)]
struct Complex {
    real: f64,
    imag: f64,
}

impl Complex {  
    fn new(real: f64, imag: f64) -> Self {
        Complex { real, imag }  
    }
  
    fn conj(&self) -> Self {
        Complex { real: self.real, imag: -self.imag }
    }

    fn abs(&self) -> f64 {
        (self.real * self.real + self.imag * self.imag).sqrt()
    }
}

fn abs(z: Complex) -> f64 {
    (z.real * z.real + z.imag * z.imag).sqrt()
}

impl Add<Complex> for Complex {
    type Output = Complex;

    fn add(self, other: Complex) -> Complex {
        Complex {
            real: self.real + other.real,
            imag: self.imag + other.imag,
        }  
    }  
}  
  
impl Sub<Complex> for Complex {
    type Output = Complex;
  
    fn sub(self, other: Complex) -> Complex {
        Complex {  
            real: self.real - other.real,
            imag: self.imag - other.imag,
        }  
    } 
}  
  
impl Mul<Complex> for Complex {
    type Output = Complex;  
  
    fn mul(self, other: Complex) -> Complex {  
        let real = self.real * other.real - self.imag * other.imag;
        let imag = self.real * other.imag + self.imag * other.real;
        Complex { real, imag }  
    }  
}

impl Div<Complex> for Complex {
    type Output = Complex;
  
    fn div(self, other: Complex) -> Complex {
        let real = (self.real * other.real + self.imag * other.imag) / (other.real * other.real + other.imag * other.imag);
        let imag = (self.imag * other.real - self.real * other.imag) / (other.real * other.real + other.imag * other.imag);
        Complex { real, imag }
    }
}  
  
impl Neg for Complex {
    type Output = Complex;
  
    fn neg(self) -> Complex {
        Complex {
            real: -self.real,
            imag: -self.imag,
        }
    }
}

fn main() {  
    let z1 = Complex::new(2.0, 3.0);
    let z2 = Complex::new(3.0, 4.0);
    let z3 = Complex::new(3.0, -4.0);

    // 复数的四则运算
    let complex_add = z1.clone() + z2.clone();
    println!("{:?} + {:?} = {:?}", z1, z2, complex_add);

    let complex_sub = z1.clone() - z2.clone();
    println!("{:?} - {:?} = {:?}", z1, z2, complex_sub);

    let complex_mul = z1.clone() * z2.clone();
    println!("{:?} * {:?} = {:?}", z1, z2, complex_mul);

    let complex_div = z2.clone() / z3.clone();
    println!("{:?} / {:?} = {:?}", z1, z2, complex_div);

    // 对比两个复数是否相等
    println!("{:?}", z1 == z2);
    // 共轭复数
    println!("{:?}", z2 == z3.conj());
    // 复数的相反数
    println!("{:?}", z2 == -z3.clone() + Complex::new(6.0,0.0));

    // 复数的模
    println!("{}", z1.abs());
    println!("{}", z2.abs());
    println!("{}", abs(z3));
}

输出:

Complex { real: 2.0, imag: 3.0 } + Complex { real: 3.0, imag: 4.0 } = Complex { real: 5.0, imag: 7.0 }
Complex { real: 2.0, imag: 3.0 } - Complex { real: 3.0, imag: 4.0 } = Complex { real: -1.0, imag: -1.0 }
Complex { real: 2.0, imag: 3.0 } * Complex { real: 3.0, imag: 4.0 } = Complex { real: -6.0, imag: 17.0 }
Complex { real: 2.0, imag: 3.0 } / Complex { real: 3.0, imag: 4.0 } = Complex { real: -0.28, imag: 0.96 }
false
true
true
3.605551275463989
5
5

示例代码中,同时还定义了复数的模 abs(),共轭复数 conj()。

两个复数的相等比较 z1 == z2,需要 #[derive(PartialEq)] 支持。

自定义 trait Display

复数结构的原始 Debug trait 表达的输出格式比较繁复,如:

Complex { real: 2.0, imag: 3.0 } + Complex { real: 3.0, imag: 4.0 } = Complex { real: 5.0, imag: 7.0 }

想要输出和数学中相同的表达(如 a + bi),需要自定义一个 Display trait,代码如下:

impl std::fmt::Display for Complex {
    fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
        if self.imag == 0.0 {
            formatter.write_str(&format!("{}", self.real))
        } else {
            let (abs, sign) = if self.imag > 0.0 {  
                (self.imag, "+" )
            } else {
                (-self.imag, "-" )
            };
            if abs == 1.0 {
                formatter.write_str(&format!("({} {} i)", self.real, sign))
            } else {
                formatter.write_str(&format!("({} {} {}i)", self.real, sign, abs))
            }
        }
    }
}

输出格式分三种情况:虚部为0,正数和负数。另外当虚部绝对值为1时省略1仅输出i虚数单位。

完整代码如下:

use std::ops::{Add, Sub, Mul, Div, Neg};

#[derive(Clone, PartialEq)]
struct Complex {
    real: f64,
    imag: f64,
}

impl std::fmt::Display for Complex {
    fn fmt(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
        if self.imag == 0.0 {
            formatter.write_str(&format!("{}", self.real))
        } else {
            let (abs, sign) = if self.imag > 0.0 {  
                (self.imag, "+" )
            } else {
                (-self.imag, "-" )
            };
            if abs == 1.0 {
                formatter.write_str(&format!("({} {} i)", self.real, sign))
            } else {
                formatter.write_str(&format!("({} {} {}i)", self.real, sign, abs))
            }
        }
    }
}

impl Complex {  
    fn new(real: f64, imag: f64) -> Self {
        Complex { real, imag }  
    }
  
    fn conj(&self) -> Self {
        Complex { real: self.real, imag: -self.imag }
    }

    fn abs(&self) -> f64 {
        (self.real * self.real + self.imag * self.imag).sqrt()
    }
}

fn abs(z: Complex) -> f64 {
    (z.real * z.real + z.imag * z.imag).sqrt()
}

impl Add<Complex> for Complex {
    type Output = Complex;

    fn add(self, other: Complex) -> Complex {
        Complex {
            real: self.real + other.real,
            imag: self.imag + other.imag,
        }  
    }  
}  
  
impl Sub<Complex> for Complex {
    type Output = Complex;
  
    fn sub(self, other: Complex) -> Complex {
        Complex {  
            real: self.real - other.real,
            imag: self.imag - other.imag,
        }  
    } 
}  
  
impl Mul<Complex> for Complex {
    type Output = Complex;  
  
    fn mul(self, other: Complex) -> Complex {  
        let real = self.real * other.real - self.imag * other.imag;
        let imag = self.real * other.imag + self.imag * other.real;
        Complex { real, imag }  
    }  
}

impl Div<Complex> for Complex {
    type Output = Complex;
  
    fn div(self, other: Complex) -> Complex {
        let real = (self.real * other.real + self.imag * other.imag) / (other.real * other.real + other.imag * other.imag);
        let imag = (self.imag * other.real - self.real * other.imag) / (other.real * other.real + other.imag * other.imag);
        Complex { real, imag }
    }
}  
  
impl Neg for Complex {
    type Output = Complex;
  
    fn neg(self) -> Complex {
        Complex {
            real: -self.real,
            imag: -self.imag,
        }
    }
}

fn main() {
    let z1 = Complex::new(2.0, 3.0);
    let z2 = Complex::new(3.0, 4.0);
    let z3 = Complex::new(3.0, -4.0);

    // 复数的四则运算
    let complex_add = z1.clone() + z2.clone();
    println!("{} + {} = {}", z1, z2, complex_add);

    let z = Complex::new(1.5, 0.5);
    println!("{} + {} = {}", z, z, z.clone() + z.clone());

    let complex_sub = z1.clone() - z2.clone();
    println!("{} - {} = {}", z1, z2, complex_sub);

    let complex_sub = z1.clone() - z1.clone();
    println!("{} - {} = {}", z1, z1, complex_sub);

    let complex_mul = z1.clone() * z2.clone();
    println!("{} * {} = {}", z1, z2, complex_mul);

    let complex_mul = z2.clone() * z3.clone();
    println!("{} * {} = {}", z2, z3, complex_mul);

    let complex_div = z2.clone() / z3.clone();
    println!("{} / {} = {}", z1, z2, complex_div);

    let complex_div = Complex::new(1.0,0.0) / z2.clone();
    println!("1 / {} = {}", z2, complex_div);

    // 对比两个复数是否相等
    println!("{:?}", z1 == z2);
    // 共轭复数
    println!("{:?}", z2 == z3.conj());
    // 复数的相反数
    println!("{:?}", z2 == -z3.clone() + Complex::new(6.0,0.0));

    // 复数的模
    println!("{}", z1.abs());
    println!("{}", z2.abs());
    println!("{}", abs(z3));
}

输出:

(2 + 3i) + (3 + 4i) = (5 + 7i)
(1.5 + 0.5i) + (1.5 + 0.5i) = (3 + i)
(2 + 3i) - (3 + 4i) = (-1 - i)
(2 + 3i) - (2 + 3i) = 0
(2 + 3i) * (3 + 4i) = (-6 + 17i)
(3 + 4i) * (3 - 4i) = 25
(2 + 3i) / (3 + 4i) = (-0.28 + 0.96i)
1 / (3 + 4i) = (0.12 - 0.16i)
false
true
true
3.605551275463989
5
5


小结

如此,复数的四则运算基本都实现了,当然复数还有三角表示式和指数表示式,根据它们的数学定义写出相当代码应该不是很难。有了复数三角式,就能方便地定义出复数的开方运算,有空可以写写这方面的代码。

本文完文章来源地址https://www.toymoban.com/news/detail-648091.html

到了这里,关于Rust 复数运算,重载加减乘除运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图像四则运算(加减乘除)

    实验目的: 1.了解图像的算术运算在数字图像处理中的初步应用。 2.体会图像算术运算处理的过程和处理前后图像的变化。 3.能够实现简单的图像处理 实验原理: 图像的代数运算包括加,减,乘,除,这些运算的主要对象是图像数据块中的数据。这四种代数运算可以由如

    2024年02月08日
    浏览(52)
  • 只使用位运算实现加减乘除

    在线OJ: LeetCode 29. 两数相除 原题目的要求是不能使用乘法, 除法和取余运算符实现除法. 在本篇博客中把题目要求提高一点, 这里只使用位运算来实现, 顺便的也就把只使用位运算实现加减乘除实现了. 首先我们需要知道两数之和可以是两个数位相加和不进位相加之和, 而两数进

    2024年02月06日
    浏览(49)
  • Pytorch入门:Tensor加减乘除矩阵运算

    若张量维数大于2,则对最后两维进行matmul。进行此运算的要求是张量a与b除最后两维外的其他维必须一致:

    2024年02月12日
    浏览(46)
  • 用Vue的三种方法实现加减乘除运算

    js插件:vue.js 教程: 首先在工具内引入vue.js 然后在body里面创建一个div并设置id,我这里给id命名为\\\"app\\\" 在id命名为\\\"app\\\"的div内使用input标签和select标签来设置运算框 然后用 methods方法 computed方法 watch(侦听器)方法 做出3种不同的加减乘除运算 第一种computed方法: 接下来我们在

    2024年02月09日
    浏览(121)
  • JAVA中char类型加减乘除运算表达式返回类型

    我们都知道java中,如果char类型和int类型做加减法,那么char类型会被精度提升至int类型然后参与运算,返回的也是int类型的数据。 那么如果表达式中参与运算的 均为char类型 ,那么表达式返回的类型是什么呢? 经过简单测试,是 int类型 。 这个问题是在调用StringBuilder.appen

    2024年02月08日
    浏览(59)
  • 【加强版】小学数学出题,加减乘除混合运算,支持自定义数字,一键打印

    在线预览:在线HTML代码预览和运行工具 - UU在线工具   复制下面代码后到该地址预览即可  注意: 在线预览不能打印 。如需打印,在电脑本地上新建文本文档,粘贴代码后保存,然后把文件后缀改为.html运行,出题点击打印就可以了 新增功能: 1、支持加减乘除运算混合多

    2024年01月17日
    浏览(47)
  • 前端vue项目使用Decimal.js做加减乘除求余运算

    运算结果是Decimal对象,需要使用.toNumber()转为数字

    2024年04月13日
    浏览(60)
  • linux|shell编程|shell脚本内的加减乘除运算实现示例

    shell脚本内的加减乘除是由于在编写kubernetes巡检脚本的时候,某些部分需要做一点简单的运算,突然发现我其实对这些不太熟悉。 因此,查阅了一些资料,现在就加减乘除运算在shell脚本内如何应用做一个简单的总结,写的不对的地方请各位轻点喷 首先,我们看一个错误的示

    2024年02月17日
    浏览(45)
  • 【ARMv8 SIMD和浮点指令编程】浮点加减乘除指令——四则运算

    浮点指令有专门的加减乘除四则运算指令,比如 FADD、FSUB、FMUL、FDIV 等。 1 FADD (scalar) 浮点加法(标量)。该指令将两个源 SIMDFP 寄存器的浮点值相加,并将结果写入目标 SIMDFP 寄存器。 该指令可以产生浮点异常。根据 FPCR 中的设置,异常会导致在 FPSR 中设置标志,或者生成同

    2024年02月05日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包