【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用)

这篇具有很好参考价值的文章主要介绍了【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

承接前文,梳理完定积分的定义及性质后,我们进入广义积分的学习。

通过可积的概念我们可以清楚,连续函数是可积的,同时,有有限个第一类间断点的函数也是可积的。这类积分积分区间是有限的,称为正常积分。而如果出现 积分区间无限(如上限为无穷等)或被积函数在积分区间内有无穷间断点,称这类积分为广义积分或反常积分。

三、广义积分

3.1 敛散性概念

(一)积分区间为无限的广义积分

【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记
实际进行判断时,我们一般直接写成原函数相减的形式。如: ∫ 1 ∞ x 1 + x 4 d x = 1 2 a r c t a n x ∣ 1 ∞ = 1 2 ( π 2 − π 4 ) = π 8 \int_1^{\infty}\frac{x}{1+x^4}dx=\frac{1}{2}arctanx \big| _1^{\infty}=\frac{1}{2}(\frac{\pi}{2}-\frac{\pi}{4})=\frac{\pi}{8} 11+x4xdx=21arctanx 1=21(2π4π)=8π

这里补充一个 Γ \Gamma Γ 函数,其定义为: Γ ( α ) = ∫ 0 ∞ x α − 1 e − x d x ( α > 0 ) \Gamma(\alpha)=\int_0^{\infty}x^{\alpha -1}e^{-x}dx (\alpha>0) Γ(α)=0xα1exdxα>0 主要有如下性质: Γ ( α + 1 ) = α Γ ( α ) , Γ ( n + 1 ) = n ! , Γ ( 1 2 ) = π . \Gamma(\alpha+1)=\alpha \Gamma(\alpha),\Gamma(n+1)=n!, \Gamma(\frac{1}{2})= \sqrt{\pi}. Γ(α+1)=αΓ(α),Γ(n+1)=n!,Γ(21)=π .

【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记

定义 2 是当下限为无穷时的广义积分,和第一种情况类似。

【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记
当上下限均为无穷时,需要将区间分为两部分,分别进行收敛性判断,且最后的积分为两部分积分之和。

(二)积分区间有限但存在无穷间断点

定义 4 —— f ( x ) ∈ C ( a , b ] f(x) \in C(a,b] f(x)C(a,b] f ( a + 0 ) = ∞ f(a+0)=\infty f(a+0)= ,对 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ,记 ∫ a + ϵ b f ( x ) d x = F ( b ) − F ( a + ϵ ) ; \int_{a+\epsilon}^bf(x)dx=F(b)-F(a+\epsilon); a+ϵbf(x)dx=F(b)F(a+ϵ); 若上述极限存在,则广义积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx 收敛,且等于该极限值。
若上述极限不存在,则广义积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx 发散。

同样,当在 b 处无穷间断或区间中其他点无穷间断时,分别有如下定义。

【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记
【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记

3.2 敛散性判别法

针对各种类型的广义积分,分别有不同的判别法,但彼此之间的形式较为相似。

【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记

除此以外,广义积分还有判别定理,有点儿级数收敛的意思了。

【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用),# 数学一,考研,学习,笔记

四、定积分应用

定积分在几何上的应用有求面积,包括旋转曲面的面积和一些曲线所围的面积等。还有求体积,如绕某条坐标轴旋转一周的体积。求曲线长度,如各种坐标系下曲线的长度。

定积分在物理上的应用主要为求做功和受力。

在具体求解时,关键是掌握好微元法的思想,先找到一个小微元 [ x , x + d x ] [x,x+dx] [x,x+dx] 。求面积则把面积的表达式写出来,如 d A = x d x dA=xdx dA=xdx 。求体积则把体积表示出来,如 d V = π x 2 d x dV=\pi x^2dx dV=πx2dx 。求压力,则把压力表示出来,如 d F = e g h ⋅ d S dF=egh\cdot dS dF=eghdS

写出来后根据积分区间进行定积分求解即可,如 V = ∫ d V = ∫ π x 2 d x V=\int dV=\int \pi x^2dx V=dV=πx2dx

写在最后

定积分的内容多啊,任重道远,后面还有重积分、曲线、曲面积分等等。不过只要坚持把这块啃下来,后面的进度就会好一些。文章来源地址https://www.toymoban.com/news/detail-648346.html

到了这里,关于【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 高等数学:微积分(下)

    导数说完了就可以说微分了。还是看图中过A点的切线,其与竖直虚线相交于C点。其中CD段的距离可以表示为 C D = k ⋅ Δ x CD = k cdot Delta x\\\\ C D = k ⋅ Δ x 这里的系数k是一个不为零的常数。原因很简单,假设这条切线与x轴的夹角为 θ theta θ (图中没有画出),那么根据三角函

    2024年02月12日
    浏览(56)
  • 高等数学——一文搞定二重积分

    定义 :设函数 z = f ( x , y ) z=f(x,y) z = f ( x , y ) 在有界区域 D D D 上有定义,将区域 D D D 任意分成 n n n 个小区域 Δ σ 1 , Δ σ 2 , . . . , Δ σ n Deltasigma_1,Deltasigma_2,...,Deltasigma_n Δ σ 1 ​ , Δ σ 2 ​ , ... , Δ σ n ​ 其中 Δ σ i Deltasigma_i Δ σ i ​ 代表第 i i i 个小区域,也表示它

    2024年04月15日
    浏览(36)
  • 宋浩高等数学笔记(十一)曲线积分与曲面积分

            个人认为同济高数乃至数学一中最烧脑的一章。。。重点在于计算方式的掌握,如果理解不了可以暂时不强求,背熟积分公式即可。此外本贴暂时忽略两类曲面积分之间的联系,以及高斯公式的相关内容,日后会尽快更新,争取高效率学习。         在数学中

    2024年02月13日
    浏览(43)
  • 【高等数学笔记】两类曲线积分、曲面积分的转化

    整体思想:局部均匀化,用很小的长度/面积元上一点某个量的数值来代替整个元的数值。 设曲线 Γ Gamma Γ 的参数方程为 x = x ( t ) , y = y ( t ) , z = z ( t ) x=x(t),y=y(t),z=z(t) x = x ( t ) , y = y ( t ) , z = z ( t ) 。令 r = ( x , y , z ) bm r=(x,y,z) r = ( x , y , z ) ,则方程为 r = r ( t ) bm r=bm r(t

    2024年02月04日
    浏览(41)
  • 高等数学重积分知识点笔记小结

    (1)首先知道什么叫曲顶柱体。(这里不多讲,不会百度)。 (2)定义:设f(x,y)是有界闭区域D上的有界函数,将闭区域D任意分成n个小闭区域oi,在每个小区域上取一点f(ai,bi),做乘积f(ai,bi)oi,并作和。如果当各个闭区域的直径中的最大值max趋近于0时,这和的极限总存在,且

    2024年02月05日
    浏览(47)
  • 高等数学啃书汇总重难点(十一)曲线积分与曲面积分

    依旧是公式极其复杂恶心的一章,建议是: 掌握两种线面积分的计算套路即可 ,和第8章一样属于同济版教材中最不重要的章节,不会对底层理解做过多考察~ 1.弧长曲线积分的几何意义 2.弧长曲线积分的定义和性质 3.弧长曲线积分的计算方式 4.坐标曲线积分的几何意义 5.坐标

    2024年02月06日
    浏览(38)
  • 高等数学啃书汇总重难点(四)不定积分

    本章主要考察方法性的技巧,对于某些理论性的概念,建议在练习中加强理解,不定积分的要义在于不断练习、不断拓宽眼界 一.不定积分的概念 二.原函数存在定理 三.不定积分的定义 四.基本积分表 五.不定积分的性质 六.一类换元法 七.二类换元法 八.换元法的常用公式 九

    2024年02月10日
    浏览(35)
  • 【高等数学】多元函数积分的轮换性,轮换对称性,对称性的区别

    轮换性:只是单纯的自变量的符号形式发生交换,与轮换前的积分(包括被积函数和积分区域)没有本质区别 注意到函数中x和y互换了,积分区域的横纵坐标也互换了,如果放在同一个坐标系下,蓝色区域和橙色区域是关于直线y=x对称的。 轮换对称性:交换函数自变量的符号

    2024年02月11日
    浏览(124)
  • 高等数学:线性代数-第三章

    矩阵的初等变换 下面三种变换称为矩阵的初等变换 对换两行(列),记作 r i ↔ r j ( c i ↔ c j ) r_{i} leftrightarrow r_{j} (c_{i} leftrightarrow c_{j}) r i ​ ↔ r j ​ ( c i ​ ↔ c j ​ ) 以数 k ≠ 0 k ne 0 k  = 0 乘某一行(列)中的所有元,记作 r i × k ( c i × k ) r_{i} times k ( c_{i}

    2024年02月11日
    浏览(46)
  • 高等工程数学 —— 第三章(2)奇异值分解和A的加号逆

    首先来看什么是奇异值 也别管什么原理了,直接看方法和例题。盘它! 奇异值分解步骤: 这里就是先求 A H A A^{H}A A H A 的特征值,然后求其特征向量并将每一个特征向量进行单位化得 V V V 然后看有几个非零特征向量就分出来几列当 V 1 V_1 V 1 ​ 求出 U 1 U_1 U 1 ​ 后将其补全成

    2023年04月13日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包