电阻串联的作用

这篇具有很好参考价值的文章主要介绍了电阻串联的作用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

电阻串联常见作用

第一个作用是:阻抗匹配:

因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可以改善匹配情况,以减少反射,避免振荡等。

常见的阻抗匹配方法

1、使用变压器来做阻抗转换

2、用串联/并联电容或电感的办法,这在调试射频电路时常使用。

3、使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

4、改变阻抗力。通过电容、电感与负载的串并联调整负载阻抗值,以达到源和负载阻抗匹配。

5、调整传输线。调整传输线是加长源和负载间的距离,配合电容和电感把阻抗力调整为零。此时信号不会发生发射,能量都能被负载吸收。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为85-100欧姆。

第二个作用是:可以减少信号边沿的陡峭程度,从而减少高频噪声以及过冲等。

因为串联的电阻,跟信号线的分布电容以及负载的输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度。大家知道,如果一个信号的边沿非常陡峭,含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。

通常,在高速信号线中才考虑使用这样的电阻。在低频情况下,一般是直接连接。

接下来将结合具体案例来讲解电阻串联的作用。

电阻串联具体应用

1、SPI信号线

串并联电阻的作用,硬件工程,电路设计,串联电阻,硬件工程,电路设计,元器件

 文章来源地址https://www.toymoban.com/news/detail-649195.html

SPI信号图

SPI信号上串联电阻,一般是几十欧姆左右,一般有如下几个作用:

1)阻抗匹配。因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可改善匹配情况,以减少反射。

2)SPI的速率较高,串联一个电阻,与线上电容和负载电容构成RC电路,减少信号陡峭,避免过冲,过冲有时候会损坏芯片GPIO,当然对EMI也有好处,尤其是高速电路。

3)调试方便,现在的芯片很多是BGA、QFN封装,串联一个电阻,调试时用示波器抓取波形方便。

2、LDO输入端

串并联电阻的作用,硬件工程,电路设计,串联电阻,硬件工程,电路设计,元器件

 

LDO输入端图

当LDO的VIN absolute maximum接近电源电压时,这时候又不想换高规格的LDO,为了节省成本,这时可以串一个小阻值电阻,能吸收一部分电压和电流,当电源端出现更大的浪涌时,电阻会身先士卒,代价更小。

假设LDO击穿,VIN和GND短路,因为串联电阻R的存在,也会避免电源SYS_5V与GND的短路。

3、TVS前后串联电阻

串并联电阻的作用,硬件工程,电路设计,串联电阻,硬件工程,电路设计,元器件

 

TVS串联电阻图一

串并联电阻的作用,硬件工程,电路设计,串联电阻,硬件工程,电路设计,元器件

 

TVS串联电阻图二

TVS串联电阻一般有两种接法,第一个图电阻在TVS前,第二图电阻在TVS后,两种电路使用场景是不一样的。

先问大家一个问题,电阻和TVS哪个抗浪涌能力强?答案毋庸置疑,当然是TVS。

1)对第一个图来说,首先要考虑浪涌大小,如果不大,可以选择一个合适功率的电阻,电阻在TVS前面,会吸收很小一部分的电流,浪涌电流IPP小了之后,对应TVS的Vc(钳位电压)也会变小,对后端负载的保护更好。

串并联电阻的作用,硬件工程,电路设计,串联电阻,硬件工程,电路设计,元器件

 

到了这里,关于电阻串联的作用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 电池串联和并联的区别有哪些

    蓄电池串联时,电流处处相等,电压是各个蓄电池电压之和。 蓄电池并联时,电压处处相等,电流是各个蓄电池电流之和。 串联并联区别 电池串联:指电池首尾相联。即第一节电池的正极接第二节电池的负极,第二节电池的正极接第三节电池的负极依次类推。 串联电压等于

    2024年02月10日
    浏览(42)
  • [电路]5-电压源、电流源的串联和并联

    1-发出功率和吸收功率关系 2-独立源和受控源 3-基尔霍夫定律 4-两端电路等效变换、电阻串并联 5-电压源、电流源的串联和并联 根据各个理想电压源的电压参考方向,得到如下表达式: u S = u S 1 + u S 2 = ∑ u S k u_S = u_{S1} + u_{S2} = sum u_{Sk} u S ​ = u S 1 ​ + u S 2 ​ = ∑ u S k ​ 具

    2024年02月02日
    浏览(32)
  • 反向放大电路并联电容与积分电路并联电阻的区别?

    运放反相比例放大电路中反馈电阻两端经常并联一个电容,而运放积分电路的反馈电容上常常并联一个电阻,两者电路结构相似,如下所示(隐去阻容值),二者有何区别呢?电阻、电容分别又起到什么作用? 先说结论,反相放大电路中,电阻为主,电容为辅,加上电容只是

    2024年01月19日
    浏览(36)
  • 级联、串联、并联求传递函数的方框图和状态方程

    目录 一、基础知识 1.传递函数 2.状态方程 二、方法论 1.级联法 2.串联法 3.并联法 三、画系统框图,求状态方程 1.传递函数 2.级联法画系统框图,求状态方程 3.串联法画系统框图,求状态方程 4.并联法画系统框图,求状态方程 传递函数是指零初始条件下线性系统响应(即输出

    2024年02月07日
    浏览(57)
  • 串联型PI和并联型PI调节器的比较

                  图3-4 仿真波形变化情况(串联型PI调节器,±1500r/min) 从图3-1到3-4比较可知,与并联型PI调节器相比,串联型PI调节器的超调量很小(速度环),且动态过程时间短,稳态过程的纹波也相对较小。综合可知,代入串联型PI调节器的控制系统的控制性能更好。 之前

    2024年02月16日
    浏览(29)
  • 电容并联放电电阻的RC 电路时间常数计算,一阶线性常系数微分方程

    就是在谁都知道的RC 电路里的电容旁边并联一个放电电阻,计算它对时间常数的影响,参考下面的示意图: 电路的输入电压是电源电压V,在R0 和R1 之间连接着一个单片机引脚,所以想计算上电后单片机引脚上电压的变化,也就是输出电压Uo。电容C 通过R0 和R1 充电,R2 放电。

    2024年02月07日
    浏览(48)
  • 相同的MOS管进行并联或者串联,它们等价的MOS管与原MOS管在宽长比上有什么联系与区别?

    相同的MOS管进行并联或者串联,它们等价的MOS管与原MOS管在宽长比上有什么联系与区别? 首先考虑MOS管M1和M2串联的情况,如图1所示。因M1和M2是相同的MOS管,所以他们的阈值电压 V T V_{T} V T ​ 相同。 图1 MOS管M1和M2串联 若M1处于导通状态,则 V G − V X − V T 0 V_{G} - V_{X} - V_{

    2024年01月19日
    浏览(39)
  • 用STM32单片机ADC+NTC热敏电阻采集温度的设计思路 | 附参考电路

    目录 前言 一、热敏电阻NTC 二、参考电路  三、激励电压选择 记录一些我在工作和学习过程中遇到的问题 NTC:在淘宝随便买的 单片机型号:STM32G030C8T6 目的:用单片机采集NTC温度 本文主要是介绍关于NTC激励电压的选择        热敏电阻 NTC(Negative Temperature Coefficient) , 直

    2024年02月02日
    浏览(39)
  • 硬件电路设计原理图设计

    叶倾城-硬件原创的个人空间_哔哩哔哩_Bilibili 硬件电路设计原理图设计第二季-1-40课已更新完成啦!!! 第三季硬件电路设计原理图设计敬请期待!感谢大家的支持! 第01课------硬件实战-硬件电路设计的方法和技巧 第02课------千兆(十兆、百兆、千兆自适应)以太网电路设计

    2023年04月15日
    浏览(45)
  • 27-硬件设计-TYPE-C电路设计

    由于USB2.0的数据率最高只有480Mbps, 可以不考虑信号走线的阻抗连续性,USB2.0的D+/-信号可以不被MUX控制而直接从主控芯片走线,然后一分二连接至USB Type-C插座的两组D+/-管脚上。 但USB3.0或者USB3.1的数据率高达5Gbps或者10Gbps,如果信号线还是被简单地一分二的话,不连续的信号线

    2024年01月19日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包