数据结构:堆的实现

这篇具有很好参考价值的文章主要介绍了数据结构:堆的实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、堆的概念

如果有一个关键码的集合 K = { k1 ,k2 ,k3 ,…,kn },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并且 k(i) < k(i*2+1) 和 k(i) < k(i*2+2), i = 0 1 , 2…,则称为小堆 ( 或大堆 ) 。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质 

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树

 

堆的存储结构

数据结构:堆的实现,算法,数据结构

 左边是逻辑结构,右边是存储结构文章来源地址https://www.toymoban.com/news/detail-649207.html


2、堆的实现

  •  堆的构建
  •  堆的销毁
  •  堆的插入
  •  堆的删除
  •  取堆顶的数据
  •  堆的数据个数
  •  堆的判空

堆的构造与销毁

void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

void HeapDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

堆的向上与向下调整

void swap(DataType*str1, DataType*str2)
{
	DataType temp = *str1;
	*str1 = *str2;
	*str2 = temp;
}
//向上调整(前提是上面是一个堆)
void AdjustUp(DataType* a, int child)
{
	//利用孩子找父亲,并且比较
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		// "<" 和 ">"取决与建立大小堆
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{break;}
	}
}
//向下调整(前提是下面左右子树是一个堆)
void AdjustDown(int* a, int n, int parent)//n是数量
{
	//利用父亲找儿子并比较大小
	int child = parent * 2 + 1;
	while (child < n)
	{
		//child + 1 < n可能没有右孩子,防止越界风险
		if (child + 1 < n && a[child + 1] < a[child])
		{
			child++;
		}
		// "<" 和 ">"取决与建立大小堆
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			int child = parent * 2 + 1;
		}
		else
			break;
	}
}

堆的插入与堆的删除

//先插入一个数到数组的尾上,再进行向上调整算法,直到满足堆
void HeapPush(HP* php, DataType x)
{
	assert(php);
	//判断是否要扩容
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		DataType* temp = (DataType*)realloc(php->a, newCapacity * sizeof(DataType));
		if (temp == NULL)
		{
			perror("realloc fail");
			return;
		}

		php->a = temp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}
//删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组
//最后一个数据,再进行向下调整算法。
void HeapPop(HP* php)
{
	assert(php);
	swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

堆的数据个数与堆的判空和取得堆的堆顶元素

DataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	return php->a[0];
}
bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

int HeapSize(HP* php)
{
	assert(php);

	return php->size;
}

3、 建堆

向上调整建堆


// 向上调整建堆
for (int i = 1; i < n; i++)
{
    Adjustup(a,i);
}

向下调整建堆



// 向下调整建堆
for (int i = (n-1-1)/2; i >= 0; i--)
{
    AdjustDown(a,n,i);
}

到了这里,关于数据结构:堆的实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构之堆的结构与实现

    目录 一、堆的概念及结构 1.1堆的概念  1.2堆的性质 1.3堆的结构 二、堆的实现 2.1堆向下调整算法(父亲与孩子做比较)  2.2堆的向上调整算法(孩子与父亲做比较) 2.3堆的创建(向下建堆)  2.4向下建堆的时间复杂度 2.5堆的插入 2.6堆的删除 2.7堆的完整代码实现 三、堆的应

    2024年02月08日
    浏览(40)
  • 数据结构—小堆的实现

    前言:前面我们已经学习了二叉树,今天我们来学习堆,堆也是一个二叉树,堆有大堆有小堆,大堆父节点大于子节点,小堆父节点总小于子节点,我们在学习C语言的时候也有一个堆的概念,那个堆是操作系统中的堆,与我们今天所学的堆全然不同。我们就来实现下小堆。

    2024年02月05日
    浏览(33)
  • 数据结构:堆的实现(C实现)

    个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》 当一颗完全二叉树用顺序表来存储时,其被称为堆。 堆总是一棵完全二叉树 堆的某个节点的值总是不大于(大堆)或不小于(小堆)其父节点的值 其可以被用来解决top k 问题 或 堆排序 下面就是要实现的堆的功能 重点在

    2024年02月13日
    浏览(35)
  • 【数据结构】堆的实现及应用

    简单不先于复杂,而是在复杂之后 。 1.1 二叉树的顺序结构 普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。 而完全二叉树更适合使用顺序结构存储。 现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系

    2024年02月21日
    浏览(46)
  • 数据结构——二叉树(堆的实现)

    目录   树概念及结构 树的相关概念 树的表示  二叉树的概念及结构   堆 堆的实现   结构体建立 初始化   添加元素  打印堆  删除堆首元素  返回首元素  判断是否为空 空间销毁  刷题找工作的好网站——牛客网 牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,

    2024年02月11日
    浏览(42)
  • 【数据结构之堆的实现】

    前言: 前篇学习了 数据结构之树和二叉树的基本概念知识,那么这篇继续学习怎么实现基本的操作。所以先建议看完上篇知识点,才有助于消化知识和理解。 / 知识点汇总 / 概念 :堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看

    2024年01月19日
    浏览(42)
  • 【数据结构】结构实现:顺序存储模式实现堆的相关操作

    🚩 纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:数据结构 🔥该文章着重讲解了使用顺序结构实现堆的插入和删除等操作。  二叉树的顺序存储是指将二叉树中的所有节点按照一定的顺序(一层一层)存储到一个数组中。  我们可以通过数组下标来表示

    2024年02月08日
    浏览(46)
  • 【数据结构】——二叉树堆的实现

     大佬们点点关注,点点赞?! 在上篇博客中我们已经介绍了树和二叉树的相关概念,相信大家都已经清楚了树和二叉树的基本思想,下面我们就来着重看看二叉树堆的实现。 在看堆的实现,我们先看看二叉树的顺序存储 二叉树的顺序存储就是以顺序表来实现的,也就是把

    2024年04月13日
    浏览(57)
  • 【数据结构】长篇详解堆,堆的向上/向下调整算法,堆排序及TopK问题

    堆就是将一组数据所有元素按完全二叉树的顺序存储方式存储在一个 一维数组 中,并满足树中 每一个父亲节点都要大于其子节点 称为 大堆 (树中 每一个父亲节点都要大于其子节点 称为 小堆 )。 性质 ①对于大堆(大根堆)来说,堆的顶部也就是数组首元素一定是最大的元素 ②

    2024年02月07日
    浏览(40)
  • 二叉树的顺序结构以及堆的实现——【数据结构】

    W...Y的主页 😊 代码仓库分享  💕 上篇文章,我们认识了什么是树以及二叉树的基本内容、表示方法……接下来我们继续来深入二叉树,感受其中的魅力。 目录  二叉树的顺序结构 堆的概念及结构 堆的实现   堆的创建  堆的初始化与释放空间  堆的插入 堆的删除  堆实

    2024年02月07日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包