R语言生存分析算法的简单组合

这篇具有很好参考价值的文章主要介绍了R语言生存分析算法的简单组合。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

library(survival)
library(randomForestSRC)

# 生成模拟数据
set.seed(123)
n <- 200
time <- rexp(n, rate = 0.1)
status <- rbinom(n, size = 1, prob = 0.7)
var1 <- rnorm(n)
var2 <- rnorm(n)
var3 <- rnorm(n)
data1 <- data.frame(time = time, status = status, var1 = var1, var2 = var2, var3 = var3)

# 定义模型列表
models <- list(
  cox = function(data) {
    fit <- survival::coxph(Surv(time,status) ~ .,data=data)
    sum<-summary(fit)[["coefficients"]][,5] 
    canshu<-names(sum)
    result<-list(fit=fit,canshu=canshu)
    return(result)
  },
  rsf=function(data){
    fit<-rfsrc(Surv(time,status) ~ .,data=data1)
    canshu<-var.select(object=fit,
                       method="md",
                       conservative="low")$md.obj$topvars.1se
    result<-list(fit=fit,canshu=canshu)
    return(result)
  }
)

# 列举所有模型组合(考虑顺序)
model<-c("cox","rsf")
all_combinations <- list()
library(gtools)
for (n in 1:length(model)) {
  permutations <- permutations(2,n,v=model)
  mat_list <- apply(permutations, 1, function(row) paste(row, collapse = ","))
  mat_vector_list <- lapply(mat_list, function(str) unlist(strsplit(str, ",")))
  all_combinations <- c(all_combinations, mat_vector_list)
}
model_combinations<-all_combinations

# 循环遍历不同模型组合
selected_vars_final <- list()
for (i in 1:length(model_combinations)) {
  comb <- model_combinations[[i]]
  selected_vars <- NULL
  # 循环遍历每个模型类型
  data1<-lung
  for (model_name in comb) {
    i=1
    if (grep(model_name,comb)==1) {
      # 根据前一步的选择变量建立模型并筛选变量
      result <- models[[model_name]](data1)
      cat("第一步:",model_name,"---",result$canshu,"\n")
    } else {
      vc=paste("c(", paste(sprintf('"%s"', selected_vars), collapse = ","), ")", sep = "")
      cat("纳入第二步的因素:",model_name,"---",vc,"\n")
      selected_data <-  data.frame(data1[,eval(parse(text = vc))],
                                   data1[,c("time","status")])
      result <- models[[model_name]](selected_data)
    }
    # 更新选定变量
    selected_vars <- result$canshu
  }
  selected_vars_final[[paste(comb, collapse = "_")]] <- selected_vars
}

print(selected_vars_final)

R语言生存分析算法的简单组合,机器学习,r语言

 文章来源地址https://www.toymoban.com/news/detail-649731.html

到了这里,关于R语言生存分析算法的简单组合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习kaggle赛事】泰坦尼克号生存预测

    目录 写在前面  数据集情况查看 数据清洗 Embarked: Fare Age Cabin  特征工程 1,探究Sex与Survived的相关性  2,探究Pcalss与Survived的关联性  3,Embarked:不同的上船地点对生存率是否有影响  ​4,Name与Survived的相关性  5,Cabin与Survived之间的相关性 6,探究孤身一人和有家人陪伴的

    2023年04月23日
    浏览(53)
  • 利用Python实现简单的机器学习算法

    机器学习是人工智能领域中非常重要的一个分支,它可以让计算机从数据中学习并提升自己的性能。Python作为一种高级编程语言,被广泛用于机器学习领域。本文将介绍如何使用Python实现简单的机器学习算法。 机器学习是一种让计算机从数据中学习并提升性能的技术。它是人

    2024年02月13日
    浏览(41)
  • 机器学习算法基础--逻辑回归简单处理mnist数据集项目

    目录 1.项目背景介绍 2.Mnist数据导入 3.数据标签提取且划分数据集 4.数据特征标准化 5.模型建立与训练 6.后验概率判断及预测 7.处理模型阈值及准确率 8.阈值分析的可视化绘图 9.模型精确性的评价标准

    2024年02月07日
    浏览(49)
  • 机器学习和大数据:如何利用机器学习算法分析和预测大数据

      近年来,随着科技的迅速发展和数据的爆炸式增长,大数据已经成为我们生活中无法忽视的一部分。大数据不仅包含着海量的信息,而且蕴含着无数的商机和挑战。然而,如何从这些海量的数据中提取有价值的信息并做出准确的预测成为了许多企业和研究机构亟需解决的问

    2024年02月06日
    浏览(55)
  • 机器学习基础算法--回归类型和评价分析

    目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算       MSE= i=1 n ( Y i - Y ^ ) 2 n RMES= i=1 n ( Y i - Y ^ ) 2 n MAE= i=1 n | Y i - Y ^ | n R 2 =1- i=1 n ( Y ^ - Y i ) 2 i=1 n ( Y ¯ - Y i )2

    2024年02月09日
    浏览(41)
  • 机器学习笔记之优化算法(十五)Baillon Haddad Theorem简单认识

    本节将简单认识 Baillon Haddad Theorem text{Baillon Haddad Theorem} Baillon Haddad Theorem ( 白老爹定理 ),并提供相关证明。 如果 函数 f ( ⋅ ) f(cdot) f ( ⋅ ) 在其定义域内 可微 ,并且是 凸函数 ,则存在如下 等价 条件 : 以下几个条件之间相互等价。 关于 f ( ⋅ ) f(cdot) f ( ⋅ ) 的 梯度

    2024年02月12日
    浏览(58)
  • 【机器学习】主成分分析(PCA)算法及Matlab实现

    【问题引入】 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可

    2024年02月04日
    浏览(53)
  • 大数据毕设项目 - 深度学习 机器学习 酒店评价情感分析算法实现

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(40)
  • 机器学习:基于Apriori算法对中医病症辩证关联规则分析

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 大家好,我

    2024年02月06日
    浏览(69)
  • 基于R语言、MATLAB、Python机器学习方法与案例分析

    目录   基于R语言机器学习方法与案例分析 基于MATLAB机器学习、深度学习在图像处理中的实践技术应用 全套Python机器学习核心技术与案例分析实践应用   基于R语言机器学习方法与案例分析 机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,

    2024年02月07日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包