实验九 数据微积分与方程数值求解(matlab)

这篇具有很好参考价值的文章主要介绍了实验九 数据微积分与方程数值求解(matlab)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

实验九 数据微积分与方程数值求解

1.1实验目的

1.2实验内容

1.3流程图

1.4程序清单

1.5运行结果及分析

1.6实验的收获与体会

1.1实验目的

1,掌握求数值导数和数值积分的方法;

2,掌握代数方程数组求解的方法;

3,掌握多常微分方程数值求解的方法。

1.2实验内容

xdot matlab,共享文章,算法,线性代数,矩阵

xdot matlab,共享文章,算法,线性代数,矩阵

1.3流程图

xdot matlab,共享文章,算法,线性代数,矩阵

1.4程序清单

%%

clc

clear

%% 1

clear;clc

x=1;i=1;

f=inline('det([x x.^2 x.^3;1+0*x 2*x 3*x.*x;0*x 2+0*x 6*x])');

while x<=3.01

    g(i)=f(x);

    i=i+1;

    x=x+0.01;

end

g;

dx=diff(g)/0.01;

f1=dx(1)

f2=dx(101)                                    

f3=dx(length(g)-1)

%% 2

clear

g1=inline('sqrt(cos(t.^2)+4*(sin(2.*t)).^2+1)');

g2=inline('log(1+x)./(1+x.^2)');

I1=quadl(g1,0,2*pi);

I2=quadl(g2,0,1);

%% 3

clear

A=[6 5 -2 5;

    9 -1 4 -1;

    3 4 2 -2;

    3 -9  0 2];

b=[-4 13 1 11]';

x(:,1)=A\b;

[L,U]=lu(A);

x(:,2)=U\(L\b);

[Q,R]=qr(A);

x(:,3)=R\(Q\b);

%% 4

clear

A=[2 7 3 1;

    3 5 2 2;

    9 4 1 7];

b=[6 4 2]';

[x,y]= line_solution(A,b)

%% 5

clear

f=inline('3*x+sin(x)-exp(x)');

root_near=fzero(f,1.5);

X=fsolve('myfun',[1,1,1],optimset('Display','off'))

%% 6

clear

f=inline('(x^3+cos(x)+x*log10(x))/exp(x)');

[x,fval]=fminbnd(f,0,1);

[U,fmin]=fminsearch('fxy',[0,0]);

%% 7

clear

[x,y]=ode45('sys',[eps,10000],[eps,eps])

plot(x,y(:,1))

%% 8

clear

[T,Y]=ode45('rigid',[0 12],[0 1 1]);

plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+');

相关函数:

function f = fj( x )

%UNTITLED3 此处显示有关此函数的摘要

%   此处显示详细说明

f=[x x^2 x^3;1 2*x 3*x^2; 0 2 6*x];

end

function [S_H, S_P] = line_solution(A,b)

% 输入参数A:系数矩阵

% 输入参数b:Ax=b的常数项列向量b

% S_H:齐次线性方程组的基础解系

% S_P:非齐次线性方程组的特解

if size(A,1) ~= length(b)   %size(A,1)求矩阵的行数

    error('输入数据错误,请重新输入!');

    return;

else

    B = [A,b];  %增广矩阵

    rank_A = rank(A);   %求系数矩阵的秩

    rank_B = rank(B);   %求增广矩阵的秩

    if rank_A ~= rank_B %无解情况

        disp('线性方程组无解!');

        S_H = [];

        S_P = [];

    else if rank_B == size(A,2) %若增广矩阵的秩 = 未知量个数

            %size(A,2)求矩阵的列数,相当于length(A)

            disp('线性方程组有唯一解!');

            S_P = A\b;  %求唯一解

            S_H = [];

        else

            disp('线性方程组有无穷解!');

            S_H = null(A,'r');%求出齐次方程组的基础解系

            S_P = A\b;  %求非齐次方程组的特解

        end

    end

end

function F = myfun( X )

%UNTITLED6 此处显示有关此函数的摘要

%   此处显示详细说明

x=X(1);y=X(2);z=X(3);

F(1)=sin(x)+y^2+log(z);

F(2)=3*x+z^y-z^3+1;

F(3)=x+y+z-5;

end

function f = fxy( u )

%UNTITLED7 此处显示有关此函数的摘要

%   此处显示详细说明

x=u(1);y=u(2);

f=2*x^3+4*x*y^3-10*x*y+y^2;

end

function xdot =sys( x,y )

%UNTITLED8 此处显示有关此函数的摘要

%   此处显示详细说明

xdot=[y(2);(5*y(2)-y(1))/x];

end

function dy = rigid( t,y)

%UNTITLED10 此处显示有关此函数的摘要

%   此处显示详细说明

dy=zeros(3,1);

dy(1)=y(2)*y(3);

dy(2)=y(1)*y(3);

dy(3)=-0.51*y(2)*y(1);

end

1.5运行结果及分析

1. 

xdot matlab,共享文章,算法,线性代数,矩阵

2.

3.

xdot matlab,共享文章,算法,线性代数,矩阵

4.x的列向量乘以一个常数加上y就是通解。

xdot matlab,共享文章,算法,线性代数,矩阵

5.

xdot matlab,共享文章,算法,线性代数,矩阵

6.

xdot matlab,共享文章,算法,线性代数,矩阵

7.可以看出结果发散。

xdot matlab,共享文章,算法,线性代数,矩阵

8.

xdot matlab,共享文章,算法,线性代数,矩阵

1.6实验的收获与体会

本次实验过后,我掌握了求数值导数和数值积分的方法和代数方程数组求解的方法,同时也掌握多常微分方程数值求解的方法。

数据微积分与方程数值求解是特别有用的工具。微积分的数值解法可以满足工程领域的需要,方程数值求解也可以满足一些需要。而往往工程问题都是不容易直接得出解析解的,那么这种情况,就需要使用数值解法来进行计算。虽然说有误差,但是这些误差都是实际践行中可以被接受和使用的。各种方法在matlab里面就只表现为一个函数,使用起来非常方便快捷。一些数值求解的过程,往往需要大规模的迭代计算,当然也可能因为结果发散,而无法迭代出一个收敛的结果,这也是很正常的一件事情,可能与系统结构相关。

总之,经过这次实验收获很大,对学习帮助很大。

源文档也可以有偿发(1块2米都可以),欢迎私聊!!!

欢迎向我赞赏:

赞赏作者https://nyzhhd.github.io/zsm.html文章来源地址https://www.toymoban.com/news/detail-650224.html

到了这里,关于实验九 数据微积分与方程数值求解(matlab)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 微积分在激光雷达的信号处理和数据分析中的应用

    微分和积分等数学工具在激光雷达信号处理中被广泛应用,以提取目标的速度、距离和位置信息,并分析目标的运动态。这些研究为激光雷达在目标检测、跟踪和环境感知等领域的应用提供了理论基础和技术支持。有一些论文论述利用激光雷达的测距信息和多普勒效应来计算

    2024年01月18日
    浏览(36)
  • 10、MATLAB程序设计与应用刘卫国(第三版)课后实验十:方程数值求解

    目录  一、  二、  三、  四、  五、 分别用 3种不同的数值方法解线性方程组。   --------------------------------------- 示例代码 - -------------------------------------------- -------------------------------------- - 运行结果 --------------------------------------------- 求代数方程的数值解。 (1)3x +sin x-e

    2024年02月16日
    浏览(47)
  • 通信入门系列——微积分中极限、连续、导数、微分、积分

    本节目录 本节内容 一、极限 1、数列极限 数列极限:设{xn}为一个实数列,A为一个定数。若对任意给定的ε0,总存在正整数N,使得当nN时,有|xn-A|ε,则称数列{xn}收敛于A,定数A称为数列{xn}的极限,记作: 也就是说,当n趋近于无穷大时,数列{xn}的极限等于或趋于A。若数列{xn}没

    2024年01月21日
    浏览(57)
  • 微积分物理题()

    在一个粗糙的平面上,有一个质量为 1 kg 1text{kg} 1 kg 的小木块,小木块的初速度为 0 0 0 ,小木块与平面的动摩擦因数 μ = 0.2 mu=0.2 μ = 0.2 。有一个拉力 F F F 拉动小木块从左往右移动,拉力 F F F 与时间 t t t 的关系为 F = 0.3 t 2 − 2.4 t + 5.6 F=0.3t^2-2.4t+5.6 F = 0.3 t 2 − 2.4 t + 5.6 。

    2024年02月15日
    浏览(44)
  • 微积分基本概念

    微分 函数的微分是指对 函数的局部变化的一种线性描述 。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。。对于函数 y = f ( x ) y = f(x) y = f ( x ) 的微分记作: d y = f ′ ( x ) d x d_y = f^{\\\'}(x)d_x d y ​ = f ′ ( x ) d x ​ 微分和导数的区别在于:

    2024年02月11日
    浏览(53)
  • 高等数学:微积分(下)

    导数说完了就可以说微分了。还是看图中过A点的切线,其与竖直虚线相交于C点。其中CD段的距离可以表示为 C D = k ⋅ Δ x CD = k cdot Delta x\\\\ C D = k ⋅ Δ x 这里的系数k是一个不为零的常数。原因很简单,假设这条切线与x轴的夹角为 θ theta θ (图中没有画出),那么根据三角函

    2024年02月12日
    浏览(56)
  • 微积分之八——级数整理

    几何级数(等比级数) ∑ n = 0 ∞ a q n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n + ⋅ ⋅ ⋅ ( a ≠ 0 ) s n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n − 1 = a ⋅ 1 − q n 1 − q { ∣ q ∣ 1 , 级 数 收 敛 ∣ q ∣ 1 , 级 数 发 散 q = 1 , S n = n a → ∞ 级 数 发 散 q = − 1 , S n = { a , n 为 奇 数 0 , n 为 偶 数 , 所

    2024年02月13日
    浏览(46)
  • 11. 微积分 - 偏导数&方向导数

    Hi, 大家好。我是茶桁。 我们上节课学习了链式法则,本节课,我们要学习「偏导数」和「方向导数」。 偏导数在导论课里面也提到过。偏导数针对多元函数去讲的。 多元函数是什么,我们拿个例子来看: 多元函数: y =

    2024年02月10日
    浏览(54)
  • 微积分——求导数的链式法则

    链式法则 (Chain Rule)是微积分最强大的法则之一。这个法则处理的是 复合函数 (Composite Functions)的导数问题。 复合函数:  以另一种方式将两个函数组合起来的函数。正式定义: 令 f  和 g  分别为两个函数,函数( f 。 g )( x ) =  f  ( g ( x ))称为 f  与 g  的复合函数。复合函数

    2023年04月08日
    浏览(55)
  • 【Python · PyTorch】线性代数 & 微积分

    本文采用Python及PyTorch版本如下: Python:3.9.0 PyTorch:2.0.1+cpu 本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。 线性代数是数学的一个分支,它的研究对象是向量、向量空间(线性空间)、线性变换及有限维的线性方程组。线性代数已被广泛地应用于

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包