[论文笔记]Glancing Transformer for Non-Autoregressive Neural Machine Translation

这篇具有很好参考价值的文章主要介绍了[论文笔记]Glancing Transformer for Non-Autoregressive Neural Machine Translation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

这是论文Glancing Transformer for Non-Autoregressive Neural Machine Translation的笔记。

传统的非自回归文本生成速度较慢,因为需要给定之前的token来预测下一个token。但自回归模型虽然效率高,但性能没那么好。
这篇论文提出了Glancing Transformer,可以只需要一次解码,并行地文本生成。并且效率不输于Transformer这种自回归方法。

简介

Transformer变成了最广泛使用的机器翻译架构。尽管它的表现很好,但Transformer的解码是低效的因为它采用序列自回归因子分解来建模概率,见下图1a。最近关于非自回归Transformer(non-autoregressive transformer,NAT)的研究的方向是并行解码目标token来加速生成。然而,纯粹(vanilla)的NAT在翻译质量上仍然落后于Transformer。NAT假设给定源句子后目标token是条件独立的(图1b)。作者认为NAT的条件独立假设阻碍了学习目标句子中单词的相关性(依赖关系)。这种相关性是至关重要的,通常Transformer通过从左到右解码来显示地捕获它。

[论文笔记]Glancing Transformer for Non-Autoregressive Neural Machine Translation,论文翻译/笔记,论文阅读,transformer,机器翻译
也有一些补救方法提出了来捕获单词的相关性,同时保留并行解码。他们的共同思想是通过迭代解码目标token,每次解码都使用掩码语言模型进行训练(图1c)。因为这些模型需要多次解码,它的生成速度显著低于纯粹的Transformer。而仅单次生成的方法表现比自回归Tran文章来源地址https://www.toymoban.com/news/detail-650251.html

到了这里,关于[论文笔记]Glancing Transformer for Non-Autoregressive Neural Machine Translation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

    Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Swin-Unet:用于医学图像分割的类Unet纯Transformer 2022年发表在 Computer Vision – ECCV 2022 Workshops Paper Code 在过去的几年里,卷积神经网络(CNN)在医学图像分析方面取得了里程碑式的成就。特别是基于U型结构和跳跃连接的深度神经

    2024年01月23日
    浏览(54)
  • A Framework for Accelerating Transformer-Based Language Model on ReRAM-Based Architecture(论文笔记)

    (发现问题): 在基于RRAM的加速器中,自注意力层在收集输入序列信息的过程中,需要所有输入序列词的前一层结果,由于输入实例在不同的时间步上被串行处理。 因此,自注意层一直保持停滞,直到上一层计算的结束。这就是数据危险,增加了在基于RRAM加速器上处理基于

    2024年03月25日
    浏览(59)
  • 论文阅读 - Non-Local Spatial Propagation Network for Depth Completion

    本文提出了一种非局部的空间传播网络用于深度图补全,简称为NLSPN。 (1)为什么需要深度图补全? 在AR、无人机控制、自动驾驶和运动规划等应用当中,需要知道物体的稠密深度信息。现有的大部分深度传感器,如雷达、RGB-D相机等,可以提供RGB图片和准确的稀疏深度图,

    2024年02月19日
    浏览(47)
  • 论文阅读:Multimodal Graph Transformer for Multimodal Question Answering

    论文名 :Multimodal Graph Transformer for Multimodal Question Answering 论文链接 尽管 Transformer模型 在视觉和语言任务中取得了成功,但它们经常隐式地从大量数据中学习知识,而不能直接利用结构化的输入数据。另一方面, 结构化学习方法 ,如集成先验信息的图神经网络(gnn),几乎无法

    2024年02月04日
    浏览(43)
  • 论文阅读 | Cross-Attention Transformer for Video Interpolation

    前言:ACCV2022wrokshop用transformer做插帧的文章,q,kv,来自不同的图像 代码:【here】 传统的插帧方法多用光流,但是光流的局限性在于 第一:它中间会算至少两个 cost volumes,它是四维的,计算量非常大 第二:光流不太好处理遮挡(光流空洞)以及运动的边缘(光流不连续)

    2024年02月09日
    浏览(44)
  • 论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

    这是对FCBFormer的改进,我的关于FCBFormer的论文阅读笔记:论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客 依然是一个双分支结构,总体结构如下: 其中一个是全卷积分支,一个是Transformer分支。 和FCBFormer不同的是,对两个分支都做了一些修改。 本文没有画FCB分支的

    2024年04月24日
    浏览(34)
  • 【论文阅读】Augmented Transformer network for MRI brain tumor segmentation

    Zhang M, Liu D, Sun Q, et al. Augmented transformer network for MRI brain tumor segmentation[J]. Journal of King Saud University-Computer and Information Sciences, 2024: 101917. [开源] IF 6.9 SCIE JCI 1.58 Q1 计算机科学2区 【核心思想】 本文提出了一种新型的MRI脑肿瘤分割方法,称为增强型transformer 网络(AugTransU-Net),

    2024年01月23日
    浏览(49)
  • 论文阅读:CenterFormer: Center-based Transformer for 3D Object Detection

    目录 概要 Motivation 整体架构流程 技术细节 Multi-scale Center Proposal Network Multi-scale Center Transformer Decoder Multi-frame CenterFormer 小结 论文地址: [2209.05588] CenterFormer: Center-based Transformer for 3D Object Detection (arxiv.org) 代码地址: GitHub - TuSimple/centerformer: Implementation for CenterFormer: Center-base

    2024年02月07日
    浏览(44)
  • Transformer 论文学习笔记

    重新学习了一下,整理了一下笔记 论文 :《Attention Is All You Need》 代码 :http://nlp.seas.harvard.edu/annotated-transformer/ 地址 :https://arxiv.org/abs/1706.03762v5 翻译 :Transformer论文翻译 特点 : 提出一种不使用 RNN、CNN,仅使用注意力机制的新模型 Transformer; 只关注句内各 token 之间的关

    2024年02月14日
    浏览(43)
  • FCT: The Fully Convolutional Transformer for Medical Image Segmentation 论文解读

    论文:The Fully Convolutional Transformer for Medical Image Segmentation (thecvf.com) 代码:Thanos-DB/FullyConvolutionalTransformer (github.com) 期刊/会议:WACV 2023 我们提出了一种新的transformer,能够分割不同形态的医学图像。 医学图像分析的细粒度特性所带来的挑战意味着transformer对其分析的适应仍处

    2024年02月10日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包