STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器

这篇具有很好参考价值的文章主要介绍了STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

只用STM32单片机+SD卡+耳机插座,实现播放MP3播放器!

看过很多STM32软解MP3的方案,即不通过类似VS1053之类的解码器芯片,直接用STM32和软件库解码MP3文件,通常使用了labmad或者Helix解码库实现,Helix相对labmad占用的RAM更少。但是大多数参考的方案还是用了外接IIS接口WM98xx之类的音频DAC芯片播放音频,稍显复杂繁琐。STM32F407Vx本身就自带了2路12位DAC输出,最高刷新速度333kHz,除了分辨率差点意思,速度上对于MP3通常44.1kHz采样率来说,用来播放音频绰绰有余了。本文给的方案和源码,直接用STM32软解码MP3并使用自带的2个DAC输出引脚输出音频左右声道。

原理:STM32从SD读取MP3文件原始数据,发送给Helix库解码,Helix解码后输出PCM数据流,将此数据进一步处理转换后,按照左右声道分别存入DAC输出1和2缓存,通过定时器以MP3文件的采样率的频率提供DAC触发节拍,通过DMA取缓存中高12位数据给DAC,在DAC1和2引脚产生音频波形,通过电容耦合到耳机的左右声道上。

MP3源文件是一种经过若干算法,将原始音频数据压缩得来的,软件解码的过程是逆过程,将压缩的音频反向转换为记录了左右声道、幅值的数据流,通常是PCM格式。

PCM:是模拟信号以固定的采样频率转换成数字信号后的表现形式。记录了音频采样的数据,双通道、16bit的PCM数据格式是以0轴为中心,范围为-32768~32767的数值,每个数据占用2字节,左声道和右声道交替存储,如图。

STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器,STM32开发,stm32,嵌入式硬件,单片机

 软解码得到的PCM数据到STM32的DAC缓存需要进一步处理。STM32的DAC是12位的,其输入范围0~4095,而双通道16位的PCM音频数据是左右声道交替存储,且数据范围-32768~32767,因此PCM到STM32的DAC缓存要按照顺序一拆为二,分为左右声道,每个数据再加上32768,使其由short int的范围转换为unsigned short int,即0~65535。由于PCM数据是对音频的采样,因此调节音量(幅值)可以在此步骤一并处理,即音频数据 x 音量 /最大音量。至于DAC是12位,只需将DAC模式设置为左对齐12位,舍弃低4位即可。

到此,STM32的DAC输出引脚上应该已经有音频信号了,通常DAC引脚上串联一个1~10uF的电容用来耦合音频信号,电容越大音质越好,电容另一端接耳机插座的左声道/右声道,插上耳机就可以欣赏音乐啦!音质嘛,反正我是听不出来好不好,跟商品MP3播放器差不多。如果不串联电容,DAC引脚直连耳机插座左右声道也能听到声音,就是有些数字信号噪声也会传进来。如果希望噪声小一些,DAC引脚输出端加一个下图的低通滤波电路也是可以的。

STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器,STM32开发,stm32,嵌入式硬件,单片机

 STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器,STM32开发,stm32,嵌入式硬件,单片机

  

Helix移植:

Helix源码的官网我没找到,直接用了野火的例程里面的代码,移植也很简单,不用改任何代码,只需要将Helix文件夹拷贝到工程目录里,然后在Keil中添加好文件,以及添加头文件途径,编译即可。工程目录如图。

STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器,STM32开发,stm32,嵌入式硬件,单片机

源码:dac配置

dac.c

/**
  ******************************************************************************
  * @file    dac.c
  * @author  ZL
  * @version V0.0.1
  * @date    September-20-2019
  * @brief   DAC configuration.
  ******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "dac.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define   CNT_FREQ          84000000      // TIM6 counter clock (prescaled APB1)

/* DHR registers offsets */
#define DHR12R1_OFFSET             ((uint32_t)0x00000008)
#define DHR12R2_OFFSET             ((uint32_t)0x00000014)
#define DHR12RD_OFFSET             ((uint32_t)0x00000020)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
uint32_t DAC_DHR12R1_ADDR = (uint32_t)DAC_BASE + DHR12R1_OFFSET + DAC_Align_12b_L;
uint32_t DAC_DHR12R2_ADDR = (uint32_t)DAC_BASE + DHR12R2_OFFSET + DAC_Align_12b_L;

uint16_t DAC_buff[2][DAC_BUF_LEN]; //DAC1、DAC2输出缓冲

/* Private function prototypes -----------------------------------------------*/
static void TIM6_Config(void);

/* Private functions ---------------------------------------------------------*/
/**
  * @brief  DAC初始化
  * @param  none
  * @retval none
*/
void DAC_Config(void)
{
	GPIO_InitTypeDef  GPIO_InitStructure;
	DAC_InitTypeDef  DAC_InitStructure;
	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
		
	DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
	DAC_InitStructure.DAC_Trigger = DAC_Trigger_T6_TRGO;
	DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
	DAC_Init(DAC_Channel_1, &DAC_InitStructure);
	DAC_Init(DAC_Channel_2, &DAC_InitStructure);
	
	//配置DMA
	DMA_InitTypeDef DMA_InitStruct;
	DMA_StructInit(&DMA_InitStruct);
	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
	
	DMA_InitStruct.DMA_PeripheralBaseAddr = (u32)DAC_DHR12R1_ADDR;
	DMA_InitStruct.DMA_Memory0BaseAddr = (u32)&DAC_buff[0];//DAC1
	DMA_InitStruct.DMA_DIR = DMA_DIR_MemoryToPeripheral;
	DMA_InitStruct.DMA_BufferSize = DAC_BUF_LEN;
	DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
	DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
	DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
	DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
	DMA_InitStruct.DMA_Mode = DMA_Mode_Circular;
	DMA_InitStruct.DMA_Priority = DMA_Priority_High;
	DMA_InitStruct.DMA_Channel = DMA_Channel_7;
	DMA_InitStruct.DMA_FIFOMode = DMA_FIFOMode_Disable;
	DMA_InitStruct.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
  DMA_InitStruct.DMA_MemoryBurst   = DMA_MemoryBurst_Single;
  DMA_InitStruct.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
	
	DMA_Init(DMA1_Stream5, &DMA_InitStruct);
		
	DMA_InitStruct.DMA_PeripheralBaseAddr = (u32)DAC_DHR12R2_ADDR;
	DMA_InitStruct.DMA_Memory0BaseAddr = (u32)&DAC_buff[1];//DAC2
	DMA_Init(DMA1_Stream6, &DMA_InitStruct);
		
	//开启DMA传输完成中断
	NVIC_InitTypeDef NVIC_InitStructure;
	
  NVIC_InitStructure.NVIC_IRQChannel = DMA1_Stream6_IRQn;
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  NVIC_Init(&NVIC_InitStructure);
	
	DMA_ClearITPendingBit(DMA1_Stream6, DMA_IT_TCIF6);
	DMA_ClearITPendingBit(DMA1_Stream6, DMA_IT_HTIF6);
	DMA_ITConfig(DMA1_Stream6, DMA_IT_TC, ENABLE);
	DMA_ITConfig(DMA1_Stream6, DMA_IT_HT, ENABLE);

//	DMA_Cmd(DMA1_Stream5, ENABLE);
//	DMA_Cmd(DMA1_Stream6, ENABLE);
	DAC_Cmd(DAC_Channel_1, ENABLE);
  DAC_Cmd(DAC_Channel_2, ENABLE);
	
	DAC_DMACmd(DAC_Channel_1, ENABLE);
	DAC_DMACmd(DAC_Channel_2, ENABLE);
	
	TIM6_Config();
}

//配置DAC采样率和DMA数据长度,并启动DMA DAC
void DAC_DMA_Start(uint32_t freq, uint16_t len)
{
	//设置DMA缓冲长度需要停止DMA
	DAC_DMA_Stop();
	//设置DMA DAC缓冲长度
	DMA_SetCurrDataCounter(DMA1_Stream5, len);
	DMA_SetCurrDataCounter(DMA1_Stream6, len);
	
	//设置定时器
	TIM_SetAutoreload(TIM6, (uint16_t)((CNT_FREQ)/freq));
	
	//启动
	DMA_Cmd(DMA1_Stream5, ENABLE);
	DMA_Cmd(DMA1_Stream6, ENABLE);
}

//停止DMA DAC
void DAC_DMA_Stop(void)
{
	DMA_Cmd(DMA1_Stream5, DISABLE);
	DMA_Cmd(DMA1_Stream6, DISABLE);
}

//定时器6用于设置DAC刷新率
static void TIM6_Config(void)
{
  TIM_TimeBaseInitTypeDef TIM6_TimeBase;

  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
  TIM_TimeBaseStructInit(&TIM6_TimeBase); 
	
  TIM6_TimeBase.TIM_Period        = (uint16_t)((CNT_FREQ)/44100);
  TIM6_TimeBase.TIM_Prescaler     = 0;
  TIM6_TimeBase.TIM_ClockDivision = 0;
  TIM6_TimeBase.TIM_CounterMode   = TIM_CounterMode_Up;
  TIM_TimeBaseInit(TIM6, &TIM6_TimeBase);
	
  TIM_SelectOutputTrigger(TIM6, TIM_TRGOSource_Update);
  TIM_Cmd(TIM6, ENABLE);
}

/**
  * @brief  DAC out1 PA4输出电压
  * @param  dat:dac数值:,0~4095
  * @retval none
*/
void DAC_Out1(uint16_t dat)
{
	DAC_SetChannel1Data(DAC_Align_12b_R,  dat);
	DAC_SoftwareTriggerCmd(DAC_Channel_1, ENABLE);
}

/**
  * @brief  DAC out2 PA5输出电压
  * @param  dat:dac数值:,0~4095
  * @retval none
*/
void DAC_Out2(uint16_t dat)
{
	DAC_SetChannel2Data(DAC_Align_12b_R,  dat);
	DAC_SoftwareTriggerCmd(DAC_Channel_2, ENABLE);
}

/********************************************* *****END OF FILE****/

源码:MP3播放流程 (原创野火,参考了野火的例程,本人进行整理和修改)

MP3player.c

/*
******************************************************************************
* @file    mp3Player.c
* @author  fire
* @version V1.0
* @date    2023-08-13
* @brief   mp3解码
******************************************************************************
*/
#include <stdio.h>
#include <string.h>
#include "ff.h" 
#include "mp3Player.h"
#include "mp3dec.h"
#include "dac.h"
#include "led.h"

/* 推荐使用以下格式mp3文件:
 * 采样率:44100Hz
 * 声  道:2
 * 比特率:320kbps
 */

/* 处理立体声音频数据时,输出缓冲区需要的最大大小为2304*16/8字节(16为PCM数据为16位),
 * 这里我们定义MP3BUFFER_SIZE为2304
 */
#define MP3BUFFER_SIZE  2304
#define INPUTBUF_SIZE   3000

static HMP3Decoder		Mp3Decoder;			/* mp3解码器指针	*/
static MP3FrameInfo		Mp3FrameInfo;		/* mP3帧信息  */
static MP3_TYPE mp3player;            /* mp3播放设备 */
volatile uint8_t Isread = 0;          /* DMA传输完成标志 */
volatile uint8_t dac_ht = 0;          //DAC dma 半传输标志

uint32_t led_delay = 0;

uint8_t inputbuf[INPUTBUF_SIZE]={0};     /* 解码输入缓冲区,1940字节为最大MP3帧大小  */
static short outbuffer[MP3BUFFER_SIZE];  /* 解码输出缓冲区*/

static FIL file;			/* file objects */
static UINT bw;       /* File R/W count */
FRESULT result; 

//从SD卡读取MP3源文件进行解码,并传入DAC缓冲区
int MP3DataDecoder(uint8_t **read_ptr, int *bytes_left)
{
	int err = 0, i = 0, outputSamps = 0;

	//bufflag开始解码 参数:mp3解码结构体、输入流指针、输入流大小、输出流指针、数据格式
	err = MP3Decode(Mp3Decoder, read_ptr, bytes_left, outbuffer, 0);
	
	if (err != ERR_MP3_NONE)	//错误处理
	{
		switch (err)
		{
			case ERR_MP3_INDATA_UNDERFLOW:
							printf("ERR_MP3_INDATA_UNDERFLOW\r\n");
							result = f_read(&file, inputbuf, INPUTBUF_SIZE, &bw);
							*read_ptr = inputbuf;
							*bytes_left = bw;
				break;		
			case ERR_MP3_MAINDATA_UNDERFLOW:
							/* do nothing - next call to decode will provide more mainData */
							printf("ERR_MP3_MAINDATA_UNDERFLOW\r\n");
				break;		
			default:
							printf("UNKNOWN ERROR:%d\r\n", err);		
							// 跳过此帧
							if (*bytes_left > 0)
							{
								(*bytes_left) --;
								read_ptr ++;
							}
				break;
		}
		return 0;
	}
	else		//解码无错误,准备把数据输出到PCM
	{
		MP3GetLastFrameInfo(Mp3Decoder, &Mp3FrameInfo);		//获取解码信息				
		/* 输出到DAC */
		outputSamps = Mp3FrameInfo.outputSamps;						//PCM数据个数
		if (outputSamps > 0)
		{
			if (Mp3FrameInfo.nChans == 1)	//单声道
			{
				//单声道数据需要复制一份到另一个声道
				for (i = outputSamps - 1; i >= 0; i--)
				{
					outbuffer[i * 2] = outbuffer[i];
					outbuffer[i * 2 + 1] = outbuffer[i];
				}
				outputSamps *= 2;
			}//if (Mp3FrameInfo.nChans == 1)	//单声道
		}//if (outputSamps > 0)
					
		//将数据传送至DMA DAC缓冲区
		for (i = 0; i < outputSamps/2; i++)
		{
			if(dac_ht == 1)
			{
				DAC_buff[0][i] = outbuffer[2*i] * mp3player.ucVolume /100 + 32768;
				DAC_buff[1][i] = outbuffer[2*i+1] * mp3player.ucVolume /100 + 32768;
			}
			else
			{
				DAC_buff[0][i+outputSamps/2] = outbuffer[2*i] * mp3player.ucVolume /100 + 32768;
				DAC_buff[1][i+outputSamps/2] = outbuffer[2*i+1] * mp3player.ucVolume /100 + 32768;
			}
		}
		
		return 1;
	}//else 解码正常
}

//读取一段MP3数据,并把读取的指针赋值read_ptr,长度赋值bytes_left
uint8_t read_file(const char *mp3file, uint8_t **read_ptr, int *bytes_left)
{
	result = f_read(&file, inputbuf, INPUTBUF_SIZE, &bw);
	
	if(result != FR_OK)
	{
		printf("读取%s失败 -> %d\r\n", mp3file, result);
		return 0;
	}
	else
	{
		*read_ptr = inputbuf;
		*bytes_left = bw;
		
		return 1;
	}
}

/**
  * @brief  MP3格式音频播放主程序
  * @param  mp3file MP3文件路径
  * @retval 无
  */
void mp3PlayerDemo(const char *mp3file)
{
	uint8_t *read_ptr = inputbuf;
	int	read_offset = 0;				/* 读偏移指针 */
	int	bytes_left = 0;					/* 剩余字节数 */	
	
	mp3player.ucStatus = STA_IDLE;
	mp3player.ucVolume = 15; //音量值,100满
	
	//尝试打开MP3文件
	result = f_open(&file, mp3file, FA_READ);
	if(result != FR_OK)
	{
		printf("Open mp3file :%s fail!!!->%d\r\n", mp3file, result);
		result = f_close (&file);
		return;	/* 停止播放 */
	}
	printf("当前播放文件 -> %s\n", mp3file);
	
	//初始化MP3解码器
	Mp3Decoder = MP3InitDecoder();	
	if(Mp3Decoder == 0)
	{
		printf("初始化helix解码库设备失败!\r\n");
		return;	/* 停止播放 */
	}
	else
	{
		printf("初始化helix解码库完成\r\n");
	}
	
	//尝试读取一段MP3数据,并把读取的指针赋值read_ptr,长度赋值bytes_left
	if(!read_file(mp3file, &read_ptr, &bytes_left))
	{
		MP3FreeDecoder(Mp3Decoder);
		return;	/* 停止播放 */
	}
	
	//尝试解码成功
	if(MP3DataDecoder(&read_ptr, &bytes_left))
	{
		//打印MP3信息
		printf(" \r\n Bitrate       %dKbps", Mp3FrameInfo.bitrate/1000);
		printf(" \r\n Samprate      %dHz",   Mp3FrameInfo.samprate);
		printf(" \r\n BitsPerSample %db",    Mp3FrameInfo.bitsPerSample);
		printf(" \r\n nChans        %d",     Mp3FrameInfo.nChans);
		printf(" \r\n Layer         %d",     Mp3FrameInfo.layer);
		printf(" \r\n Version       %d",     Mp3FrameInfo.version);
		printf(" \r\n OutputSamps   %d",     Mp3FrameInfo.outputSamps);
		printf("\r\n");
		
		//启动DAC,开始发声
		if (Mp3FrameInfo.nChans == 1)	//单声道要将outputSamps*2
		{
			DAC_DMA_Start(Mp3FrameInfo.samprate, 2 * Mp3FrameInfo.outputSamps);
		}
		else//双声道直接用Mp3FrameInfo.outputSamps
		{
			DAC_DMA_Start(Mp3FrameInfo.samprate, Mp3FrameInfo.outputSamps);
		}
	}
	else //解码失败
	{
		MP3FreeDecoder(Mp3Decoder);
		return;
	}
	
	/* 放音状态 */
	mp3player.ucStatus = STA_PLAYING;
	
	/* 进入主程序循环体 */
	while(mp3player.ucStatus == STA_PLAYING)
	{
			//寻找帧同步,返回第一个同步字的位置
			read_offset = MP3FindSyncWord(read_ptr, bytes_left);
			if(read_offset < 0)					//没有找到同步字
			{
				if(!read_file(mp3file, &read_ptr, &bytes_left))//重新读取一次文件再找
				{
					continue;//回到while(mp3player.ucStatus == STA_PLAYING)后面
				}
			}
			else//找到同步字
			{			
				read_ptr   += read_offset;	//偏移至同步字的位置
				bytes_left -= read_offset;	//同步字之后的数据大小	
				
				if(bytes_left < 1024)				//如果剩余的数据小于1024字节,补充数据
				{
					/* 注意这个地方因为采用的是DMA读取,所以一定要4字节对齐  */
					u16 i = (uint32_t)(bytes_left)&3;	//判断多余的字节
					if(i) i=4-i;						//需要补充的字节
					memcpy(inputbuf+i, read_ptr, bytes_left);	//从对齐位置开始复制
					read_ptr = inputbuf+i;										//指向数据对齐位置
					result = f_read(&file, inputbuf+bytes_left+i, INPUTBUF_SIZE-bytes_left-i, &bw);//补充数据
					if(result != FR_OK)
					{
						printf("读取%s失败 -> %d\r\n",mp3file,result);
						break;
					}
					bytes_left += bw;		//有效数据流大小
				}
			}
			
			//MP3数据解码并送入DAC缓存
			if(!MP3DataDecoder(&read_ptr, &bytes_left))
			{//如果播放出错,Isread置1,避免卡住死循环
				Isread = 1;
			}
			
			//mp3文件读取完成,退出
			if(file.fptr == file.fsize)
			{
				printf("单曲播放完毕\r\n");
				break;
			}	

			//等待DAC发送一半或全部中断
			while(Isread == 0)
			{
				led_delay++;
				if(led_delay == 0xffffff)
				{
					led_delay=0;
					LED1_TROG;
				}
				//Input_scan();		//等待DMA传输完成,此间可以运行按键扫描及处理事件
			}
			Isread = 0;
	}

	//运行到此处,说明单曲播放完成,收尾工作
	DAC_DMA_Stop();//停止喂DAC数据	
	mp3player.ucStatus = STA_IDLE;
	MP3FreeDecoder(Mp3Decoder);//清理缓存
	f_close(&file);	
}

void DMA1_Stream6_IRQHandler(void)
{
	if(DMA_GetITStatus(DMA1_Stream6, DMA_IT_HTIF6) != RESET) //半传输
	{	
		dac_ht = 1;		
		Isread=1;
		
    DMA_ClearITPendingBit(DMA1_Stream6, DMA_IT_HTIF6);
  }
	
	if(DMA_GetITStatus(DMA1_Stream6, DMA_IT_TCIF6) != RESET) //全传输
	{
		dac_ht = 0;
		Isread=1;
		
    DMA_ClearITPendingBit(DMA1_Stream6, DMA_IT_TCIF6);
  }
}

/***************************** (END OF FILE) *********************************/

源码:main.c

/**
  ******************************************************************************
  * @file    ../User/main.c 
  * @author  ZL
  * @version V1.0
  * @date    2015-12-26
  * @brief   Main program body
  ******************************************************************************
**/

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "hw_includes.h"
#include "ff.h"  
#include "exfuns.h"  
#include "mp3Player.h"

//遍历目录文件并打印输出
u8 scan_files(u8 * path)
{
	FRESULT res;
	char buf[512] = {0};	
  char *fn;
	
#if _USE_LFN
 	fileinfo.lfsize = _MAX_LFN * 2 + 1;
	fileinfo.lfname = buf;
#endif
 
	res = f_opendir(&dir,(const TCHAR*)path);
	if (res == FR_OK) 
	{	
		printf("\r\n"); 
		
		while(1){
			
			res = f_readdir(&dir, &fileinfo);                
			if (res != FR_OK || fileinfo.fname[0] == 0) break;  
 
#if _USE_LFN
			fn = *fileinfo.lfname ? fileinfo.lfname : fileinfo.fname;
#else							   
			fn = fileinfo.fname;
#endif	    

			printf("%s/", path);			
			printf("%s\r\n", fn);			
		} 
  }	  
 
  return res;	  
}

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{	
	delay_init(168);
	usart1_Init(115200);
	LED_Init();
	DAC_Config();

	if(!SD_Init())
 	{
		exfuns_init();							//为fatfs相关变量申请内存				 
		f_mount(fs[0],"0:",1); 					//挂载SD卡 
	}

	//打印SD目录和文件
	scan_files("0:");
	
	LED0_ON;
	 		
	while (1)
	{
		mp3PlayerDemo("0:/断桥残雪.MP3");
		mp3PlayerDemo("0:/张国荣-玻璃之情.MP3");

		delay_ms(50);
	}
}

为方便调试测试,使用usart1打印数据。实测效果:

STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器,STM32开发,stm32,嵌入式硬件,单片机

STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器,STM32开发,stm32,嵌入式硬件,单片机

程序源码与原理图,测试音频:

链接:https://pan.baidu.com/s/10hYXkrqnuBQgs0DWKLUUOA?pwd=iatt 
提取码:iatt

知道这里下载要积分登录什么的麻烦得很,所以程序放到百度网盘了,假如连接失效,记得在评论区喊我更新!

理论上STM32F1或者其他系列也能用这个方案,要自己改改测试喽,本文把思路分享出来抛砖引玉。文章来源地址https://www.toymoban.com/news/detail-650614.html

到了这里,关于STM32F407使用Helix库软解MP3并通过DAC输出,最精简的STM32+SD卡实现MP3播放器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • RT-Thread使用PWM实现灯亮度调节——STM32F407

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 RT-Thread使用PWM实现灯亮度调节——STM32F407ZG 作为新入门的嵌入式选手,最近在学习RT-Thread操作系统,鉴于自己健忘的记性,打算记录下来后面好回顾学习。 今天要总结的是RT-Thread使用PWM实现灯亮度调节

    2024年02月15日
    浏览(42)
  • STM32F407——串口通信

    本文将对串口通信的分类和基于 stm32 的串口配置进行介绍,以及如何使用串口调试助手进行串口收发功能的调试,旨在帮助还不会使用 stm32 单片机串口资源进行通信的家人们快速学会如何使用串口来进行通信。 (纯干货、快速上手、零基础也能会!!!) (1)串口,即串

    2023年04月08日
    浏览(48)
  • STM32F407的介绍

    内核 32位 高性能ARM Cortex-M4处理器 时钟: 高达168MHz,实际还可以超频一点点 stm32f407的主频通过PLL倍频后能够达到168MHz,而且芯片内置一个16MHz的晶振和一个32KHz的晶振,可以满足不同功耗的需求。 支持FPU(浮点运算)和DSP指令 144引脚 114个IO口 存储器容量: 1024K FLASH, 192K

    2024年02月10日
    浏览(52)
  • STM32F407的时钟

    时钟源用来为环形脉冲发生器提供频率稳定且电平匹配的方波时钟脉冲信号。它通常由石英 晶体振荡器和与非门组成的正反馈振荡电路组成,其输出送至环形脉冲发生器。 F4开发指南P107 F4开发指南P108 HSI高速内部时钟源 High Speed Internal。RC 振荡器,频率为 16MHz。可以直接作为

    2024年02月10日
    浏览(50)
  • 初识 STM32和STM32F407简介

    2007 年 6 月,ST 在北京发布了全球第一款基于 ARM Cortex M3 内核的 32 位通用微控制 器芯片:STM32F103,以优异的性能,丰富的资源,超高的性价比,迅速占领市场,从此一鸣 惊人,一发不可收拾,截止到 2020 年 6 月,STM32 累计出货量超过 45 亿颗。 战舰开发板使用的 STM32F103ZET6

    2023年04月08日
    浏览(70)
  • STM32F407 移植 FreeRTOS

    本实验是基于正点原子 STM32F407ZG 探索者开发板完成的,所以需要一个STM32F407ZG 探索者开发板 用于移植的基础工程(下面会讲) FreeRTOS源码(下面会讲) 本实验所有用到的代码:基于正点原子STM32F407的FreeRTOS移植工程.zip 1.1 移植前准备 1.1.1 基础工程 由于后续需要用到 LED、

    2024年02月08日
    浏览(65)
  • STM32F407的PWM

    泉水 STM32 的定时器除了 TIM6 和 7。其他的定时器都可以用来产生 PWM 输出。 高级定时器 TIM1 和 TIM8 可以同时产生多达 7 路的 PWM 输出。 通用定时器也能同时产生多达 4路的 PWM 输出 STM32F407 最多可以同时产生 30 路 PWM 输出! 这里我们仅利用 TIM14的 CH1 产生一路 PWM 输出。 如上所

    2024年02月17日
    浏览(43)
  • 基于STM32F407的智能门锁

            在消费升级渗透在各个领域的今天,国民消费发生着巨大的变化,与每个人息息相关的家居行业也是如此。现今,越来越多的智能家居产品出现在普通老百姓的生活中,智能照明、智能窗帘、智能扫地机器人等各种智能产品都给人们的生活带来了极大的便利。智能

    2024年02月11日
    浏览(64)
  • STM32F407添加DSP库

    编译程序出现以下报错 出现 “error: #5: cannot open source input file “arm_const_structs.h”: No such file or directory” 错误的原因是编译器无法找到名为 “arm_const_structs.h” 的头文件。 头文件路径错误 头文件未安装或丢失 编译器配置问题 添加DSP库 添加DSP库可以参考这篇博客: STM32CubeMX关

    2024年02月05日
    浏览(61)
  • STM32F407 滴答定时器

    介绍STM32F407滴答定时器配置方法、使用方式,封装延时函数得到精确的时间。 STM32F407参考手册中第10章介绍了滴答定时器的校准值。 M4权威指南介绍滴答定时器的章节,M3权威指南中与M4权威指南中的介绍一样。 在sys.c文件中增加滴答定时器的代码 在delay.c文件增加以下代码

    2024年02月11日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包