【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)

这篇具有很好参考价值的文章主要介绍了【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、随机试验与随机事件

1.1 随机试验

若一个试验满足如下条件:

  1. 在相同的条件下该试验可重复进行;
  2. 试验的结果是多样的且所有可能的结果在试验前都是确定的;
  3. 某次试验之前不确定具体发生的结果,

这样的试验称为随机试验,简称试验,一般用字母 E E E 表示。

1.2 样本空间

E E E 为随机试验,随机试验 E E E所有可能的基本结果所组成的集合,称为随机试验 E E E 的样本空间,记为 Ω \Omega Ω Ω \Omega Ω 中的任意一个元素称为样本点。

1,样本空间里面所有的元素必须是最基本的,即不可再分。
2,样本空间必须是所有可能的基本结果,即具有完备性,且同一个基本结果在样本空间中只出现一次。

1.3 随机事件

E E E 为随机试验, Ω \Omega Ω 为其样本空间,则 Ω \Omega Ω 的子集称为随机事件,其中 ∅ \emptyset 称为不可能事件, Ω \Omega Ω 称为必然事件。


二、事件的运算与关系

2.1 事件的运算

A , B A,B A,B 为两个随机事件,则事件 A A A 与事件 B B B 同时发生的事件,称为事件 A , B A,B A,B积事件,记为 A B AB AB A ⋂ B A\bigcap B AB ,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1),# 数学一,概率论,考研,学习,笔记
事件 A A A 或事件 B B B 发生的事件(即事件 A A A 与事件 B B B 至少有一个事件发生的事件),称为事件 A , B A,B A,B和事件,记为 A + B A+B A+B A ⋃ B A\bigcup B AB ,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1),# 数学一,概率论,考研,学习,笔记
事件 A A A 发生而事件 B B B 不发生的事件,称为事件 A , B A,B A,B差事件,记为 A − B A-B AB 。事件 A A A 不发生的事件,称为事件 A A A补事件,记为 A ‾ \overline{A} A

2.2 事件的关系

A , B A,B A,B 为两个随机事件,若事件 A A A 发生时,事件 B B B 一定发生,则称 A A A 包含于 B B B ,记为 A ⊂ B A\subset B AB 。若有 A ⊂ B , B ⊂ A A\subset B,B\subset A AB,BA ,称两事件相等,记为 A = B A=B A=B

若事件 A A A B B B 不能同时发生,称事件 A , B A,B A,B 不相容或互斥,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1),# 数学一,概率论,考研,学习,笔记
若事件 A A A B B B 不能同时发生,但至少会有一个发生,称事件 A , B A,B A,B 为对立事件,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1),# 数学一,概率论,考研,学习,笔记

(1) A = ( A − B ) + A B A=(A-B)+AB A=(AB)+AB ,且 A − B A-B AB A B AB AB 互斥。
(2) A + B = ( A − B ) + ( B − A ) + A B A+B=(A-B)+(B-A)+AB A+B=(AB)+(BA)+AB ,且 A − B , B − A , A B A-B,B-A,AB AB,BA,AB 两两互斥。
(3) A B ⊂ A ⊂ A + B , A B ⊂ B ⊂ A + B AB\subset A\subset A+B,AB\subset B\subset A+B ABAA+B,ABBA+B
(4)事件 A , B A,B A,B 互斥的充要条件是 A B = ∅ AB=\empty AB=
(5)事件 A , B A,B A,B 对立的充要条件是 A B = ∅ AB=\empty AB= ,且 A + B = Ω A+B=\Omega A+B=Ω

2.3 事件运算的性质

好多啊,如果要记住的话可费劲了,还容易错,最好还是结合图示来记忆和推吧。

1. A B = B A , A + B = B + A ; AB=BA,A+B=B+A; AB=BA,A+B=B+A;

2. ( 1 ) A ⋃ A = A , A ⋂ A = A ; (1)A\bigcup A=A,A\bigcap A=A; (1)AA=A,AA=A;
( 2 ) A ⋂ ( B ⋃ C ) = ( A ⋂ B ) ⋃ ( A ⋂ C ) , A ⋃ ( B ⋂ C ) = ( A ⋃ B ) ⋂ ( A ⋃ C ) ; (2)A\bigcap(B\bigcup C)=(A\bigcap B)\bigcup (A\bigcap C),A \bigcup (B \bigcap C)=(A\bigcup B) \bigcap (A \bigcup C); 2A(BC)=(AB)(AC),A(BC)=(AB)(AC);

3.(1) A = ( A − B ) ⋃ A ; A=(A-B) \bigcup A; A=(AB)A;
( 2 ) ( A − B ) ⋂ A = A − B ; (2)(A-B)\bigcap A=A-B; 2(AB)A=AB;
( 3 ) A + B = ( A − B ) ⋃ A B ⋃ ( B − A ) ; (3)A+B=(A-B)\bigcup AB \bigcup (B-A); 3A+B=(AB)AB(BA);

4.(1) A + A ‾ = Ω ; A+\overline{A}=\Omega; A+A=Ω;
( 2 ) A ⋂ A ‾ = ∅ ; (2)A \bigcap \overline{A} =\empty; 2AA=;

5.(1) A ∩ B ‾ = A ‾ ∪ B ‾ ; \overline{A\cap B}=\overline{A}\cup \overline{B}; AB=AB;
( 2 ) A ‾ ∩ B ‾ = A ∪ B ‾ (2)\overline{A}\cap\overline{B}=\overline{A\cup B} 2AB=AB

第 5 条的结论比较有规律,很像戴帽子和脱帽子,都要变运算。同样有如下运算性质: A ∪ B ‾ = A ‾ ∩ B ‾ , A ‾ ∪ B ‾ = A ∩ B ‾ \overline{A\cup B}=\overline{A}\cap \overline{B},\overline{A}\cup\overline{B}=\overline{A\cap B} AB=AB,AB=AB


三、概率的公理化定义与概率的基本性质

3.1 概率的公理化定义

设随机试验 E E E 的样本空间为 Ω \Omega Ω ,在 Ω \Omega Ω 上定义满足如下条件的随机事件的函数 P ( A ) ( A ⊂ Ω ) P(A)(A \subset \Omega) P(A)(AΩ) ,称为事件 A A A 的概率:

(1)(非负性) 对任意的事件 A A A ,有 P ( A ) ≥ 0 ; P(A) \geq 0; P(A)0;

(2)(归一性) P ( Ω ) = 1 ; P(\Omega)=1; P(Ω)=1;

(3)(可列可加性) 设 A 1 , A 2 , … , A n , … A_1,A_2,\dots,A_n,\dots A1,A2,,An, 为不相容的随机事件,则有 P ( ⋃ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) , P(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}P(A_n), P(n=1An)=n=1P(An), 则对任意的 A ⊂ Ω A\subset \Omega AΩ ,称 P ( A ) P(A) P(A) 为事件 A A A 的概率。

3.2 概率的基本性质

(一) P ( ∅ ) = 0. P(\empty)=0. P()=0.
证明:令 A 1 = A 2 = ⋯ = A n = ⋯ = ∅ A_1=A_2= \dots=A_n=\dots=\empty A1=A2==An== ,有 A 1 = A 2 = ⋯ = A n = … A_1=A_2= \dots=A_n=\dots A1=A2==An= 互不相容,由可列可加性,有 P ( A 1 + A 2 + ⋯ + A n + …   ) = P ( A 1 ) + P ( A 2 ) + … P ( A n ) + … , P(A_1+A_2+ \dots+A_n+\dots)=P(A_1)+P(A_2)+\dots P(A_n)+\dots, P(A1+A2++An+)=P(A1)+P(A2)+P(An)+, A 1 + A 2 + ⋯ + A n + ⋯ = ∅ A_1+A_2+ \dots+A_n+\dots =\empty A1+A2++An+= ,可得 P ( ∅ ) = P ( ∅ ) + P ( ∅ ) + ⋯ + P ( ∅ ) + … , P(\empty)=P(\empty)+P(\empty)+\dots+P(\empty)+\dots , P()=P()+P()++P()+, P ( ∅ ) = 0 P(\empty)=0 P()=0

(二)(有限可加性) A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,,An 为互斥的有限个随机事件列,则 P ( ⋃ k = 1 n A k ) = ∑ k = 1 n P ( A k ) . P(\bigcup_{k=1}^{n}A_k)=\sum_{k=1}^{n}P(A_k). P(k=1nAk)=k=1nP(Ak). 证明:取 A n + 1 = A n + 2 = ⋯ = ∅ A_{n+1}=A_{n+2}=\dots=\empty An+1=An+2== ,则 A 1 , A 2 , … , A n , … A_1,A_2,\dots,A_n,\dots A1,A2,,An, 为不相容的随机事件,由 P ( A n + 1 ) = P ( A n + 2 ) = ⋯ = 0 P(A_{n+1})=P(A_{n+2})=\dots=0 P(An+1)=P(An+2)==0 及可列可加性,可得 P ( ⋃ n = 1 ∞ A n ) = P ( ⋃ k = 1 n A k ) = P ( A 1 ) + P ( A 2 ) + … P ( A n ) = ∑ k = 1 n P ( A k ) . P(\bigcup_{n=1}^{\infty}A_n)=P(\bigcup_{k=1}^{n}A_k)=P(A_1)+P(A_2)+\dots P(A_n)=\sum_{k=1}^{n}P(A_k). P(n=1An)=P(k=1nAk)=P(A1)+P(A2)+P(An)=k=1nP(Ak). (三)(补概率的公式) P ( A ‾ ) = 1 − P ( A ) . P(\overline{A})=1-P(A). P(A)=1P(A).


写在最后

剩下关于概率的基本公式、独立事件以及贝叶斯和概型,放到下一篇文章吧。文章来源地址https://www.toymoban.com/news/detail-650704.html

到了这里,关于【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

    【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

    设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,cdots ,X_n) ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为来自总体 X X X 的简单随机样本, θ theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) widehat{theta}=varphi(X_1,X_2,cdots,X_n) θ = φ ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为参数 θ theta θ 的一个点估

    2024年02月06日
    浏览(13)
  • 【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

    【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

    承接前文,我们继续学习第二章,一维随机变量及其分布的第二部分内容。 (一)(0-1)分布 设随机变量 X X X 的可能取值为 0 或 1 ,且其概率为 P P P { X = 1 X=1 X = 1 } = p , =p, = p , P P P { X = 0 X=0 X = 0 } = 1 − p ( 0 p 1 =1-p(0 p 1 = 1 − p ( 0 p 1 ,称 X X X 服从(0-1)分布,记为 X ∼ B

    2024年02月11日
    浏览(10)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。 定义 1 —— 二维随机变量。设 X , Y X,Y X , Y 为定义于同一样本空

    2024年02月07日
    浏览(16)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(19)
  • 概率论与数理统计_数理统计部分

    概率论与数理统计_数理统计部分

    目录 相关符号 相关概念与例题 背景 总体与样本 统计量 统计量 常用统计量【重点】 直方图 经验分布函数 正态总体的抽样分布 前言复习 𝝌𝟐分布 𝒕分布 𝑭分布 上侧分位点 抽样分布定理【重点】 点估计 前言 点估计【重点】 矩估计方法【重点】 极大似然估计方法【重

    2024年02月10日
    浏览(12)
  • 概率论与数理统计 第一章 概率论的基本概念

    概率论与数理统计 第一章 概率论的基本概念

    1.1.1 前言 1.研究对象: 确定性现象:必然发生或不发生 随机现象:个别试验结果呈现不确定性,大量试验结果呈现统计规律性 2.概率论与数理统计: ​ 该学科是研究和揭示随机现象统计规律性的学科。 1.1.2 随机试验 1.定义: 可以在相同条件下重复进行; 每次试验的结果可

    2024年03月20日
    浏览(27)
  • 《概率论与数理统计》学习笔记

    《概率论与数理统计》学习笔记

    重温《概率论与数理统计》进行查漏补缺,并对其中的概念公式等内容进行总结,以便日后回顾。 目录 第一章 概率论的基本概念 第二章 随机变量及其分布 第三章  多维随机变量及其分布 第四章  随机变量的数字特征 第五章  大数定律及中心极限定理 第六章  样本及抽样

    2024年02月03日
    浏览(27)
  • 概率论与数理统计期末复习

    概率论与数理统计期末复习

    泊松分布 连续性随机变量概率密度 概率密度积分求分布函数,概率密度函数积分求概率,分布函数端点值相减为概率 均匀分布 正太分布标准化 例题 离散型随机变量函数的分布 概率密度求概率密度 先积分,再求导 例题 二维离散型随机变量的分布 联合分布律 离散型用枚举

    2024年02月08日
    浏览(17)
  • 【概率论和数理统计-基本概念】

    【概率论和数理统计-基本概念】

    自然界的 现象 分为两类,一类是 确定现象 ,如正负电荷的吸引;一类是 随机现象 ,如抛硬币出现正负。 研究后发现,随机现象也有 统计规律性 。 随机试验 随机现象(通过随机试验,来研究随机现象。) 样本空间 样本点 随机事件(特定情况下,样本空间的一个子集。

    2024年02月03日
    浏览(28)
  • 概率论与数理统计:第一章:随机事件及其概率

    概率论与数理统计:第一章:随机事件及其概率

    ①古典概型求概率 ②几何概型求概率 ③七大公式求概率 ④独立性 (1)随机试验、随机事件、样本空间 1. 随机试验 E 2. 随机事件 A、B、C ① 必然事件 Ω : P ( Ω ) = 1 P(Ω)=1 P ( Ω ) = 1 ② 不可能事件 Ø : P ( Ø ) = 0 P(Ø)=0 P ( Ø ) = 0 3.样本空间 ① 样本点 ω = 基本事件 ② 样本空间

    2024年02月14日
    浏览(15)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包