谁能讲清楚Spark之Spark系统架构

这篇具有很好参考价值的文章主要介绍了谁能讲清楚Spark之Spark系统架构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

### 整体架构概述
        Spark与Hadoop MapReduce的结构类似,Spark也采用Master-Worker结构。如果一个Spark集群由4个节点组成,即1个Master节点和3个Worker节点,那么在部署Standalone版本后,Spark部署的系统架构图如图2.1所示。简单来说,Master节点负责管理应用和任务,Worker节点负责执行任务。

### 具体功能

        我们接下来先介绍Master节点和Worker节点的具体功能,然后介绍一些Spark系统中的基本概念,以及一些实现细节。

1.Master节点和Worker节点的职责如下所述。

        Master节点上常驻Master进程。该进程负责管理全部的Worker节点,如将Spark任务分配给Worker节点,收集Worker节点上任务的运行信息,监控Worker节点的存活状态等。
        Worker节点上常驻Worker进程。该进程除了与Master节点通信,还负责管理Spark任务的执行,如启动Executor来执行具体的Spark任务,监控任务运行状态等。

2.执行顺讯

        启动Spark集群时,Master节点上会启动Master进程,每个Worker节点上会启动Worker进程。启动Spark集群后,接下来可以提交Spark应用到集群中执行,Master节点接收到应用后首先会通知Worker节点启动Executor,然后分配Spark计算任务(task)到Executor上执行,Executor接收到task后,为每个task启动1个线程来执行。

3.这里有几个概念需要解释一下。

        Spark application,即Sp文章来源地址https://www.toymoban.com/news/detail-651537.html

到了这里,关于谁能讲清楚Spark之Spark系统架构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 尚硅谷大数据技术Spark教程-笔记01【Spark(概述、快速上手、运行环境、运行架构)】

    视频地址: 尚硅谷大数据Spark教程从入门到精通_哔哩哔哩_bilibili 尚硅谷大数据技术Spark教程-笔记01【Spark(概述、快速上手、运行环境、运行架构)】 尚硅谷大数据技术Spark教程-笔记02【SparkCore(核心编程、案例实操)】 尚硅谷大数据技术Spark教程-笔记03【SparkSQL(概述、核心编程、

    2023年04月21日
    浏览(48)
  • 大数据之Spark架构设计与工作流程

    Driver Program(驱动器) 驱动器程序负责执行用户的主函数,创建 SparkContext 对象。 它负责构建并优化 DAG(有向无环图),表示 RDD(弹性分布式数据集)操作的执行计划。 驱动器还负责任务的调度,并与集群管理器(如 Hadoop YARN、Apache Mesos 或 Standalone 模式下的 Master 节点)进

    2024年01月20日
    浏览(103)
  • 提高数据的安全性和可控性,数栈基于 Ranger 实现的 Spark SQL 权限控制实践之路

    在企业级应用中,数据的安全性和隐私保护是极其重要的。Spark 作为数栈底层计算引擎之一,必须确保数据只能被授权的人员访问,避免出现数据泄露和滥用的情况。为了实现Spark SQL 对数据的精细化管理及提高数据的安全性和可控性,数栈基于 Apache Ranger 实现了 Spark SQL 对数

    2024年02月05日
    浏览(59)
  • 数据湖架构Hudi(二)Hudi版本0.12源码编译、Hudi集成spark、使用IDEA与spark对hudi表增删改查

    Hadoop 3.1.3 Hive 3.1.2 Flink 1.13.6,scala-2.12 Spark 3.2.2,scala-2.12 2.1.1 环境准备 2.1.2 下载源码包 2.1.3 在pom文件中新增repository加速依赖下载 在pom文件中修改依赖的组件版本: 2.1.4 修改源码兼容hadoop3并添加kafka依赖 Hudi默认依赖的hadoop2,要兼容hadoop3,除了修改版本,还需要修改如下代

    2024年02月06日
    浏览(57)
  • Spark(26):Spark通讯架构

    目录 0. 相关文章链接 1. Spark通信架构概述 2. Spark 通讯架构解析  Spark文章汇总  Spark 中通信框架的发展: Spark 早期版本中采用 Akka 作为内部通信部件。 Spark1.3 中引入 Netty 通信框架,为了解决 Shuffle 的大数据传输问题使用 Spark1.6 中 Akka 和 Netty 可以配置使用。 Netty 完全实现

    2024年02月16日
    浏览(36)
  • 处理大数据的基础架构,OLTP和OLAP的区别,数据库与Hadoop、Spark、Hive和Flink大数据技术

    2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,oracle,尤其sql要学,当然,像很多金融企业、安全机构啥的,他们必须要用oracle数据库 这oracle比sql安全,强大多了,所以你需要学

    2024年02月08日
    浏览(61)
  • Spark学习(二)---Spark运行架构和核心概念

    1.Spark运行架构 Spark框架的核心是一个计算引擎,它采用了master-slave的结构。 图形中的 Driver 表示 master, 负责管理整个集群中的作业任务调度。图形中的 Executor 则是 slave,负责实际执行任务。 1.1 核心组件 由此可以得出,在Spark框架中有两个核心组件: 1.1.1 Driver Spark 驱动器

    2024年02月13日
    浏览(38)
  • HDFS常用操作以及使用Spark读取文件系统数据

    掌握在Linux虚拟机中安装Hadoop和Spark的方法; 熟悉HDFS的基本使用方法; 掌握使用Spark访问本地文件和HDFS文件的方法。 启动Hadoop,在HDFS中创建用户目录“/user/hadoop” 在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,

    2024年04月22日
    浏览(43)
  • 大数据技术原理与应用 实验6 Spark数据处理系统的搭建

    熟悉常用的Spark操作。 1.熟悉Spark Shell的使用; 2.熟悉常用的Spark RDD API、Spark SQL API和Spark DataFrames API。 操作系统:Linux Spark版本: 1.6 Hadoop版本: 3.3.0 JDK版本:1.8 使用Spark shell完成如下习题: a)读取Spark安装目录下的文件README.md(/usr/local/spark/README.md); b)统计包含“Spark”的单词

    2024年02月09日
    浏览(62)
  • 大数据编程实验一:HDFS常用操作和Spark读取文件系统数据

    这是我们大数据专业开设的第二门课程——大数据编程,使用的参考书是《Spark编程基础》,这门课跟大数据技术基础是分开学习的,但这门课是用的我们自己在电脑上搭建的虚拟环境进行实验的,不是在那个平台上,而且搭建的还是伪分布式,这门课主要偏向于有关大数据

    2024年04月10日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包