神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释

这篇具有很好参考价值的文章主要介绍了神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概念

逻辑回归损失函数是用来衡量逻辑回归模型预测与实际观测之间差异的函数。它的目标是找到一组模型参数,使得预测结果尽可能接近实际观测。

理解

在逻辑回归中,常用的损失函数是对数似然损失(Log-Likelihood Loss),也称为交叉熵损失(Cross-Entropy Loss)。它在分类问题中非常常见,特别适用于二分类问题。

公式

假设我们有一组训练样本 ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , … , ( x ( m ) , y ( m ) ) (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)}) (x(1),y(1)),(x(2),y(2)),,(x(m),y(m)),其中 x ( i ) x^{(i)} x(i) 是输入特征, y ( i ) y^{(i)} y(i) 是对应的实际标签(0 或 1)。模型的预测结果为 y ^ ( i ) \hat{y}^{(i)} y^(i),它是由逻辑回归函数转换得到的: y ^ ( i ) = h θ ( x ( i ) ) = 1 1 + e − θ T x ( i ) \hat{y}^{(i)} = h_\theta(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} y^(i)=hθ(x(i))=1+eθTx(i)1

对于每个样本,我们可以定义一个对数似然函数:
神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释,神经网络补充,神经网络,神经网络,逻辑回归,人工智能
其中 m m m 是样本数量。

这个损失函数的意义是,当模型的预测结果与实际标签一致时,对数似然损失趋近于0。当模型的预测与实际不一致时,损失会逐渐增加。因此,优化模型的参数就是通过最小化这个损失函数,使得模型的预测结果尽可能接近实际标签。

逻辑回归损失函数的优化通常使用梯度下降等优化算法。通过迭代更新模型参数,最终使得损失函数达到最小值,从而得到能够对数据进行合理分类的逻辑回归模型。文章来源地址https://www.toymoban.com/news/detail-651553.html

代码实现

import numpy as np
from sklearn.model_selection import train_test_split

# 生成模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化模型参数
theta = np.zeros(X_train.shape[1])

# 定义sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 定义损失函数
def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

# 定义梯度计算函数
def compute_gradient(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    gradient = X.T.dot(h - y) / m
    return gradient

# 执行梯度下降
learning_rate = 0.01
num_iterations = 1000

for _ in range(num_iterations):
    gradient = compute_gradient(X_train, y_train, theta)
    theta -= learning_rate * gradient

# 在测试集上计算损失
test_loss = compute_loss(X_test, y_test, theta)
print("测试集上的损失:", test_loss)

到了这里,关于神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 神经网络基础-神经网络补充概念-01-二分分类

    二分分类是一种常见的机器学习任务,其目标是将一组数据点分成两个不同的类别。在二分分类中,每个数据点都有一个与之关联的标签,通常是“正类”或“负类”。算法的任务是根据数据点的特征来学习一个模型,以便能够准确地将新的未标记数据点分配到正确的类别中

    2024年02月13日
    浏览(42)
  • 神经网络基础-神经网络补充概念-20-激活函数

    激活函数是神经网络中的一个重要组成部分,它引入了非线性性质,使得神经网络可以学习和表示更复杂的函数关系。激活函数对于将输入信号转换为输出信号起到了关键作用,它在神经元的计算过程中引入了非线性变换。 Sigmoid函数: Sigmoid 函数将输入映射到一个 0 到 1 的

    2024年02月12日
    浏览(44)
  • 神经网络基础-神经网络补充概念-56-迁移学习

    迁移学习(Transfer Learning)是一种机器学习技术,旨在将在一个任务上学到的知识或模型迁移到另一个相关任务上,以提高新任务的性能。迁移学习的核心思想是通过利用源领域(source domain)的知识来改善目标领域(target domain)的学习任务。 迁移学习的优势在于可以充分利

    2024年02月12日
    浏览(40)
  • 神经网络基础-神经网络补充概念-48-rmsprop

    RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。 RMSProp的核心思想是根据参数梯度的历史

    2024年02月12日
    浏览(44)
  • 神经网络基础-神经网络补充概念-42-梯度检验

    梯度检验(Gradient Checking)是一种验证数值计算梯度与解析计算梯度之间是否一致的技术,通常用于确保实现的反向传播算法正确性。在深度学习中,通过梯度检验可以帮助验证你的神经网络模型是否正确地计算了梯度,从而减少可能的错误。 梯度检验的基本思想是使用数值

    2024年02月11日
    浏览(39)
  • 神经网络基础-神经网络补充概念-62-池化层

    池化层(Pooling Layer)是深度学习神经网络中常用的一种层级结构,用于减小输入数据的空间尺寸,从而降低模型的计算复杂度,减少过拟合,并且在一定程度上提取输入数据的重要特征。池化层通常紧跟在卷积层之后,用于缩小卷积层输出的尺寸。 常见的池化操作包括最大

    2024年02月12日
    浏览(46)
  • 神经网络基础-神经网络补充概念-60-卷积步长

    在深度学习中,卷积步长(convolution stride)是指在卷积操作中滑动卷积核的步幅。卷积操作是神经网络中常用的操作之一,用于从输入数据中提取特征。步长决定了卷积核在输入数据上的滑动间隔,从而影响输出特征图的大小。 卷积步长的值可以是正整数,通常为1、2、3等。

    2024年02月12日
    浏览(48)
  • 神经网络基础-神经网络补充概念-59-padding

    在深度学习中,“padding”(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。 主要目的是为了解决卷积层或池化层等操作对输入尺寸的影

    2024年02月12日
    浏览(47)
  • 神经网络基础-神经网络补充概念-17-计算神经网络的输出

    计算神经网络的输出通常涉及前向传播(Forward Propagation)的过程,其中输入数据通过网络的层级结构,逐步被传递并变换,最终生成预测结果。下面我将为你展示一个简单的神经网络前向传播的示例。 假设我们有一个具有以下参数的简单神经网络: 输入层:2个神经元 隐藏

    2024年02月12日
    浏览(41)
  • 神经网络基础-神经网络补充概念-57-多任务学习

    多任务学习(Multi-Task Learning,MTL)是一种机器学习方法,旨在同时学习多个相关任务,通过共享特征表示来提高模型的性能。在多任务学习中,不同任务之间可以是相关的,共享的,或者相互支持的,因此通过同时训练这些任务可以提供更多的信息来改善模型的泛化能力。

    2024年02月12日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包