详解ATSS、SimOTA、taskAligned、o2f标签分配

这篇具有很好参考价值的文章主要介绍了详解ATSS、SimOTA、taskAligned、o2f标签分配。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

标签分配也是影响目标检测AP的一个重要因素,仅是训练技巧,不会增加推理耗时。例如ATSS就采用自适应正负样本分配的方式带来2%的无痛涨点。最近也是好奇这些标签分配具体是怎么做的,故记录目前学习到的4种算法。代码目前基本上没啥详细注释(因为是直接抄来的),后续会精读加注释。


一、论文链接

ATSS
SimOTA(YOLOX)
taskAligned(TOOD)
o2f

二、ATSS

原理介绍

详解ATSS、SimOTA、taskAligned、o2f标签分配,深度学习笔记,目标检测,深度学习,目标检测标签分配
直接上ATSS标签分配算法步骤,用人话说就是

  1. 对于每一个GT,根据中心距离最近的原则,每个FPN层选择k个anchor,假如是4个FPN层,那一共会到4k个
  2. 计算GT和k个anchor之间的IOUs
  3. 求IOUs的均值和均方差,mean、std
  4. 将均值和均方差相加的和作为IOU阈值
  5. 将IOU高于阈值的挑出来作为正样本
    算法就是这么简单,却很有效果。以IOU均值和方差之和作为均值的好处在于:若IOU都很高,此时均值也较高,说明匹配的都挺好的,所以IOU阈值应该较高;若IOU差异大,此时IOU的方差就会大,就会出现一些匹配的比较好,还有一些匹配的比较差,此时加上方差就会把匹配的差的去掉。IOU方差有利于确定哪几个FPN层来预测目标,如下图所示:
    详解ATSS、SimOTA、taskAligned、o2f标签分配,深度学习笔记,目标检测,深度学习,目标检测标签分配
    (a)的方差比较高,均值加方差,此时只有level3的被保留了,(b)的方差就比较低,1、2都可适配。

代码

抄自PaddleDetection

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ..bbox_utils import iou_similarity, batch_iou_similarity
from ..bbox_utils import bbox_center
from .utils import (check_points_inside_bboxes, compute_max_iou_anchor,
                    compute_max_iou_gt)

__all__ = ['ATSSAssigner']


@register
class ATSSAssigner(nn.Layer):
    """Bridging the Gap Between Anchor-based and Anchor-free Detection
     via Adaptive Training Sample Selection
    """
    __shared__ = ['num_classes']

    def __init__(self,
                 topk=9,
                 num_classes=80,
                 force_gt_matching=False,
                 eps=1e-9):
        super(ATSSAssigner, self).__init__()
        self.topk = topk
        self.num_classes = num_classes
        self.force_gt_matching = force_gt_matching
        self.eps = eps

    def _gather_topk_pyramid(self, gt2anchor_distances, num_anchors_list,
                             pad_gt_mask):
        gt2anchor_distances_list = paddle.split(
            gt2anchor_distances, num_anchors_list, axis=-1)
        num_anchors_index = np.cumsum(num_anchors_list).tolist()
        num_anchors_index = [0, ] + num_anchors_index[:-1]
        is_in_topk_list = []
        topk_idxs_list = []
        for distances, anchors_index in zip(gt2anchor_distances_list,
                                            num_anchors_index):
            num_anchors = distances.shape[-1]
            _, topk_idxs = paddle.topk(
                distances, self.topk, axis=-1, largest=False)
            topk_idxs_list.append(topk_idxs + anchors_index)
            is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(
                axis=-2).astype(gt2anchor_distances.dtype)
            is_in_topk_list.append(is_in_topk * pad_gt_mask)
        is_in_topk_list = paddle.concat(is_in_topk_list, axis=-1)
        topk_idxs_list = paddle.concat(topk_idxs_list, axis=-1)
        return is_in_topk_list, topk_idxs_list

    @paddle.no_grad()
    def forward(self,
                anchor_bboxes,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index,
                gt_scores=None,
                pred_bboxes=None):
        r"""This code is based on
            https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/atss_assigner.py

        The assignment is done in following steps
        1. compute iou between all bbox (bbox of all pyramid levels) and gt
        2. compute center distance between all bbox and gt
        3. on each pyramid level, for each gt, select k bbox whose center
           are closest to the gt center, so we total select k*l bbox as
           candidates for each gt
        4. get corresponding iou for the these candidates, and compute the
           mean and std, set mean + std as the iou threshold
        5. select these candidates whose iou are greater than or equal to
           the threshold as positive
        6. limit the positive sample's center in gt
        7. if an anchor box is assigned to multiple gts, the one with the
           highest iou will be selected.
        Args:
            anchor_bboxes (Tensor, float32): pre-defined anchors, shape(L, 4),
                    "xmin, xmax, ymin, ymax" format
            num_anchors_list (List): num of anchors in each level
            gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
            gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
            pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
            bg_index (int): background index
            gt_scores (Tensor|None, float32) Score of gt_bboxes,
                    shape(B, n, 1), if None, then it will initialize with one_hot label
            pred_bboxes (Tensor, float32, optional): predicted bounding boxes, shape(B, L, 4)
        Returns:
            assigned_labels (Tensor): (B, L)
            assigned_bboxes (Tensor): (B, L, 4)
            assigned_scores (Tensor): (B, L, C), if pred_bboxes is not None, then output ious
        """
        assert gt_labels.ndim == gt_bboxes.ndim and \
               gt_bboxes.ndim == 3

        num_anchors, _ = anchor_bboxes.shape
        batch_size, num_max_boxes, _ = gt_bboxes.shape

        # negative batch
        if num_max_boxes == 0:
            assigned_labels = paddle.full(
                [batch_size, num_anchors], bg_index, dtype=gt_labels.dtype)
            assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
            assigned_scores = paddle.zeros(
                [batch_size, num_anchors, self.num_classes])
            return assigned_labels, assigned_bboxes, assigned_scores

        # 1. compute iou between gt and anchor bbox, [B, n, L]
        ious = iou_similarity(gt_bboxes.reshape([-1, 4]), anchor_bboxes)
        ious = ious.reshape([batch_size, -1, num_anchors])

        # 2. compute center distance between all anchors and gt, [B, n, L]
        gt_centers = bbox_center(gt_bboxes.reshape([-1, 4])).unsqueeze(1)
        anchor_centers = bbox_center(anchor_bboxes)
        gt2anchor_distances = (gt_centers - anchor_centers.unsqueeze(0)) \
            .norm(2, axis=-1).reshape([batch_size, -1, num_anchors])

        # 3. on each pyramid level, selecting topk closest candidates
        # based on the center distance, [B, n, L]
        is_in_topk, topk_idxs = self._gather_topk_pyramid(
            gt2anchor_distances, num_anchors_list, pad_gt_mask)

        # 4. get corresponding iou for the these candidates, and compute the
        # mean and std, 5. set mean + std as the iou threshold
        iou_candidates = ious * is_in_topk
        iou_threshold = paddle.index_sample(
            iou_candidates.flatten(stop_axis=-2),
            topk_idxs.flatten(stop_axis=-2))
        iou_threshold = iou_threshold.reshape([batch_size, num_max_boxes, -1])
        iou_threshold = iou_threshold.mean(axis=-1, keepdim=True) + \
                        iou_threshold.std(axis=-1, keepdim=True)
        is_in_topk = paddle.where(iou_candidates > iou_threshold, is_in_topk,
                                  paddle.zeros_like(is_in_topk))

        # 6. check the positive sample's center in gt, [B, n, L]
        is_in_gts = check_points_inside_bboxes(anchor_centers, gt_bboxes)

        # select positive sample, [B, n, L]
        mask_positive = is_in_topk * is_in_gts * pad_gt_mask

        # 7. if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected.
        mask_positive_sum = mask_positive.sum(axis=-2)
        if mask_positive_sum.max() > 1:
            mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
                [1, num_max_boxes, 1])
            is_max_iou = compute_max_iou_anchor(ious)
            mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
                                         mask_positive)
            mask_positive_sum = mask_positive.sum(axis=-2)
        # 8. make sure every gt_bbox matches the anchor
        if self.force_gt_matching:
            is_max_iou = compute_max_iou_gt(ious) * pad_gt_mask
            mask_max_iou = (is_max_iou.sum(-2, keepdim=True) == 1).tile(
                [1, num_max_boxes, 1])
            mask_positive = paddle.where(mask_max_iou, is_max_iou,
                                         mask_positive)
            mask_positive_sum = mask_positive.sum(axis=-2)
        assigned_gt_index = mask_positive.argmax(axis=-2)

        # assigned target
        batch_ind = paddle.arange(
            end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
        assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
        assigned_labels = paddle.gather(
            gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
        assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
        assigned_labels = paddle.where(
            mask_positive_sum > 0, assigned_labels,
            paddle.full_like(assigned_labels, bg_index))

        assigned_bboxes = paddle.gather(
            gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
        assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])

        assigned_scores = F.one_hot(assigned_labels, self.num_classes + 1)
        ind = list(range(self.num_classes + 1))
        ind.remove(bg_index)
        assigned_scores = paddle.index_select(
            assigned_scores, paddle.to_tensor(ind), axis=-1)
        if pred_bboxes is not None:
            # assigned iou
            ious = batch_iou_similarity(gt_bboxes, pred_bboxes) * mask_positive
            ious = ious.max(axis=-2).unsqueeze(-1)
            assigned_scores *= ious
        elif gt_scores is not None:
            gather_scores = paddle.gather(
                gt_scores.flatten(), assigned_gt_index.flatten(), axis=0)
            gather_scores = gather_scores.reshape([batch_size, num_anchors])
            gather_scores = paddle.where(mask_positive_sum > 0, gather_scores,
                                         paddle.zeros_like(gather_scores))
            assigned_scores *= gather_scores.unsqueeze(-1)

        return assigned_labels, assigned_bboxes, assigned_scores

SimOTA

原理介绍

详解ATSS、SimOTA、taskAligned、o2f标签分配,深度学习笔记,目标检测,深度学习,目标检测标签分配
盗个图,SimOTA的算法流程也极其简单,不多说了看图把。需要说明的是,前期由于模型预测不准,dynamic_k基本就为1。

代码

再次抄自PaddleDetection

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/sim_ota_assigner.py

import paddle
import numpy as np
import paddle.nn.functional as F

from ppdet.modeling.losses.varifocal_loss import varifocal_loss
from ppdet.modeling.bbox_utils import batch_bbox_overlaps
from ppdet.core.workspace import register


@register
class SimOTAAssigner(object):
    """Computes matching between predictions and ground truth.
    Args:
        center_radius (int | float, optional): Ground truth center size
            to judge whether a prior is in center. Default 2.5.
        candidate_topk (int, optional): The candidate top-k which used to
            get top-k ious to calculate dynamic-k. Default 10.
        iou_weight (int | float, optional): The scale factor for regression
            iou cost. Default 3.0.
        cls_weight (int | float, optional): The scale factor for classification
            cost. Default 1.0.
        num_classes (int): The num_classes of dataset.
        use_vfl (int): Whether to use varifocal_loss when calculating the cost matrix.
    """
    __shared__ = ['num_classes']

    def __init__(self,
                 center_radius=2.5,
                 candidate_topk=10,
                 iou_weight=3.0,
                 cls_weight=1.0,
                 num_classes=80,
                 use_vfl=True):
        self.center_radius = center_radius
        self.candidate_topk = candidate_topk
        self.iou_weight = iou_weight
        self.cls_weight = cls_weight
        self.num_classes = num_classes
        self.use_vfl = use_vfl

    def get_in_gt_and_in_center_info(self, flatten_center_and_stride,
                                     gt_bboxes):
        num_gt = gt_bboxes.shape[0]

        flatten_x = flatten_center_and_stride[:, 0].unsqueeze(1).tile(
            [1, num_gt])
        flatten_y = flatten_center_and_stride[:, 1].unsqueeze(1).tile(
            [1, num_gt])
        flatten_stride_x = flatten_center_and_stride[:, 2].unsqueeze(1).tile(
            [1, num_gt])
        flatten_stride_y = flatten_center_and_stride[:, 3].unsqueeze(1).tile(
            [1, num_gt])

        # is prior centers in gt bboxes, shape: [n_center, n_gt]
        l_ = flatten_x - gt_bboxes[:, 0]
        t_ = flatten_y - gt_bboxes[:, 1]
        r_ = gt_bboxes[:, 2] - flatten_x
        b_ = gt_bboxes[:, 3] - flatten_y

        deltas = paddle.stack([l_, t_, r_, b_], axis=1)
        is_in_gts = deltas.min(axis=1) > 0
        is_in_gts_all = is_in_gts.sum(axis=1) > 0

        # is prior centers in gt centers
        gt_center_xs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
        gt_center_ys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
        ct_bound_l = gt_center_xs - self.center_radius * flatten_stride_x
        ct_bound_t = gt_center_ys - self.center_radius * flatten_stride_y
        ct_bound_r = gt_center_xs + self.center_radius * flatten_stride_x
        ct_bound_b = gt_center_ys + self.center_radius * flatten_stride_y

        cl_ = flatten_x - ct_bound_l
        ct_ = flatten_y - ct_bound_t
        cr_ = ct_bound_r - flatten_x
        cb_ = ct_bound_b - flatten_y

        ct_deltas = paddle.stack([cl_, ct_, cr_, cb_], axis=1)
        is_in_cts = ct_deltas.min(axis=1) > 0
        is_in_cts_all = is_in_cts.sum(axis=1) > 0

        # in any of gts or gt centers, shape: [n_center]
        is_in_gts_or_centers_all = paddle.logical_or(is_in_gts_all,
                                                     is_in_cts_all)

        is_in_gts_or_centers_all_inds = paddle.nonzero(
            is_in_gts_or_centers_all).squeeze(1)

        # both in gts and gt centers, shape: [num_fg, num_gt]
        is_in_gts_and_centers = paddle.logical_and(
            paddle.gather(
                is_in_gts.cast('int'), is_in_gts_or_centers_all_inds,
                axis=0).cast('bool'),
            paddle.gather(
                is_in_cts.cast('int'), is_in_gts_or_centers_all_inds,
                axis=0).cast('bool'))
        return is_in_gts_or_centers_all, is_in_gts_or_centers_all_inds, is_in_gts_and_centers

    def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
        match_matrix = np.zeros_like(cost_matrix.numpy())
        # select candidate topk ious for dynamic-k calculation
        topk_ious, _ = paddle.topk(pairwise_ious, self.candidate_topk, axis=0)
        # calculate dynamic k for each gt
        dynamic_ks = paddle.clip(topk_ious.sum(0).cast('int'), min=1)
        for gt_idx in range(num_gt):
            _, pos_idx = paddle.topk(
                cost_matrix[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
            match_matrix[:, gt_idx][pos_idx.numpy()] = 1.0

        del topk_ious, dynamic_ks, pos_idx

        # match points more than two gts
        extra_match_gts_mask = match_matrix.sum(1) > 1
        if extra_match_gts_mask.sum() > 0:
            cost_matrix = cost_matrix.numpy()
            cost_argmin = np.argmin(
                cost_matrix[extra_match_gts_mask, :], axis=1)
            match_matrix[extra_match_gts_mask, :] *= 0.0
            match_matrix[extra_match_gts_mask, cost_argmin] = 1.0
        # get foreground mask
        match_fg_mask_inmatrix = match_matrix.sum(1) > 0
        match_gt_inds_to_fg = match_matrix[match_fg_mask_inmatrix, :].argmax(1)

        return match_gt_inds_to_fg, match_fg_mask_inmatrix

    def get_sample(self, assign_gt_inds, gt_bboxes):
        pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0])
        neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0])
        pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1

        if gt_bboxes.size == 0:
            # hack for index error case
            assert pos_assigned_gt_inds.size == 0
            pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4)
        else:
            if len(gt_bboxes.shape) < 2:
                gt_bboxes = gt_bboxes.resize(-1, 4)
            pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :]
        return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds

    def __call__(self,
                 flatten_cls_pred_scores,
                 flatten_center_and_stride,
                 flatten_bboxes,
                 gt_bboxes,
                 gt_labels,
                 eps=1e-7):
        """Assign gt to priors using SimOTA.
        TODO: add comment.
        Returns:
            assign_result: The assigned result.
        """
        num_gt = gt_bboxes.shape[0]
        num_bboxes = flatten_bboxes.shape[0]

        if num_gt == 0 or num_bboxes == 0:
            # No ground truth or boxes
            label = np.ones([num_bboxes], dtype=np.int64) * self.num_classes
            label_weight = np.ones([num_bboxes], dtype=np.float32)
            bbox_target = np.zeros_like(flatten_center_and_stride)
            return 0, label, label_weight, bbox_target

        is_in_gts_or_centers_all, is_in_gts_or_centers_all_inds, is_in_boxes_and_center = self.get_in_gt_and_in_center_info(
            flatten_center_and_stride, gt_bboxes)

        # bboxes and scores to calculate matrix
        valid_flatten_bboxes = flatten_bboxes[is_in_gts_or_centers_all_inds]
        valid_cls_pred_scores = flatten_cls_pred_scores[
            is_in_gts_or_centers_all_inds]
        num_valid_bboxes = valid_flatten_bboxes.shape[0]

        pairwise_ious = batch_bbox_overlaps(valid_flatten_bboxes,
                                            gt_bboxes)  # [num_points,num_gts]
        if self.use_vfl:
            gt_vfl_labels = gt_labels.squeeze(-1).unsqueeze(0).tile(
                [num_valid_bboxes, 1]).reshape([-1])
            valid_pred_scores = valid_cls_pred_scores.unsqueeze(1).tile(
                [1, num_gt, 1]).reshape([-1, self.num_classes])
            vfl_score = np.zeros(valid_pred_scores.shape)
            vfl_score[np.arange(0, vfl_score.shape[0]), gt_vfl_labels.numpy(
            )] = pairwise_ious.reshape([-1])
            vfl_score = paddle.to_tensor(vfl_score)
            losses_vfl = varifocal_loss(
                valid_pred_scores, vfl_score,
                use_sigmoid=False).reshape([num_valid_bboxes, num_gt])
            losses_giou = batch_bbox_overlaps(
                valid_flatten_bboxes, gt_bboxes, mode='giou')
            cost_matrix = (
                losses_vfl * self.cls_weight + losses_giou * self.iou_weight +
                paddle.logical_not(is_in_boxes_and_center).cast('float32') *
                100000000)
        else:
            iou_cost = -paddle.log(pairwise_ious + eps)
            gt_onehot_label = (F.one_hot(
                gt_labels.squeeze(-1).cast(paddle.int64),
                flatten_cls_pred_scores.shape[-1]).cast('float32').unsqueeze(0)
                               .tile([num_valid_bboxes, 1, 1]))

            valid_pred_scores = valid_cls_pred_scores.unsqueeze(1).tile(
                [1, num_gt, 1])
            cls_cost = F.binary_cross_entropy(
                valid_pred_scores, gt_onehot_label, reduction='none').sum(-1)

            cost_matrix = (
                cls_cost * self.cls_weight + iou_cost * self.iou_weight +
                paddle.logical_not(is_in_boxes_and_center).cast('float32') *
                100000000)

        match_gt_inds_to_fg, match_fg_mask_inmatrix = \
            self.dynamic_k_matching(
                cost_matrix, pairwise_ious, num_gt)

        # sample and assign results
        assigned_gt_inds = np.zeros([num_bboxes], dtype=np.int64)
        match_fg_mask_inall = np.zeros_like(assigned_gt_inds)
        match_fg_mask_inall[is_in_gts_or_centers_all.numpy(
        )] = match_fg_mask_inmatrix

        assigned_gt_inds[match_fg_mask_inall.astype(
            np.bool)] = match_gt_inds_to_fg + 1

        pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds \
            = self.get_sample(assigned_gt_inds, gt_bboxes.numpy())

        bbox_target = np.zeros_like(flatten_bboxes)
        bbox_weight = np.zeros_like(flatten_bboxes)
        label = np.ones([num_bboxes], dtype=np.int64) * self.num_classes
        label_weight = np.zeros([num_bboxes], dtype=np.float32)

        if len(pos_inds) > 0:
            gt_labels = gt_labels.numpy()
            pos_bbox_targets = pos_gt_bboxes
            bbox_target[pos_inds, :] = pos_bbox_targets
            bbox_weight[pos_inds, :] = 1.0
            if not np.any(gt_labels):
                label[pos_inds] = 0
            else:
                label[pos_inds] = gt_labels.squeeze(-1)[pos_assigned_gt_inds]

            label_weight[pos_inds] = 1.0
        if len(neg_inds) > 0:
            label_weight[neg_inds] = 1.0

        pos_num = max(pos_inds.size, 1)

        return pos_num, label, label_weight, bbox_target

TaskAligned assigner

原理介绍

这是TOOD里面的一种方法,被用在了百度的pp-picodet中,非常强,感觉也很精妙,配合VFL loss效果很好。下面介绍一下算法步骤:

  1. 将iou 和 分类分数一起算一个综合分数 t = s α ∗ u β t=s^\alpha*u^\beta t=sαuβ
  2. 根据t选topK个预测框作为正样本。
  3. 计算新的软标签 t ′ = t / m a x t ∗ m a x u t'=t/max_t * max_u t=t/maxtmaxu这里对t进行了一个归一化操作,让最大值对应最大的IOU。感觉这个非常强,分类分数和IOU都并合并进了软标签。

代码

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
from ..bbox_utils import batch_iou_similarity
from .utils import (gather_topk_anchors, check_points_inside_bboxes,
                    compute_max_iou_anchor)

__all__ = ['TaskAlignedAssigner']


@register
class TaskAlignedAssigner(nn.Layer):
    """TOOD: Task-aligned One-stage Object Detection
    """

    def __init__(self, topk=13, alpha=1.0, beta=6.0, eps=1e-9):
        super(TaskAlignedAssigner, self).__init__()
        self.topk = topk
        self.alpha = alpha
        self.beta = beta
        self.eps = eps

    @paddle.no_grad()
    def forward(self,
                pred_scores,
                pred_bboxes,
                anchor_points,
                num_anchors_list,
                gt_labels,
                gt_bboxes,
                pad_gt_mask,
                bg_index,
                gt_scores=None):
        r"""This code is based on
            https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/task_aligned_assigner.py

        The assignment is done in following steps
        1. compute alignment metric between all bbox (bbox of all pyramid levels) and gt
        2. select top-k bbox as candidates for each gt
        3. limit the positive sample's center in gt (because the anchor-free detector
           only can predict positive distance)
        4. if an anchor box is assigned to multiple gts, the one with the
           highest iou will be selected.
        Args:
            pred_scores (Tensor, float32): predicted class probability, shape(B, L, C)
            pred_bboxes (Tensor, float32): predicted bounding boxes, shape(B, L, 4)
            anchor_points (Tensor, float32): pre-defined anchors, shape(L, 2), "cxcy" format
            num_anchors_list (List): num of anchors in each level, shape(L)
            gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
            gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
            pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
            bg_index (int): background index
            gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1)
        Returns:
            assigned_labels (Tensor): (B, L)
            assigned_bboxes (Tensor): (B, L, 4)
            assigned_scores (Tensor): (B, L, C)
        """
        assert pred_scores.ndim == pred_bboxes.ndim
        assert gt_labels.ndim == gt_bboxes.ndim and \
               gt_bboxes.ndim == 3

        batch_size, num_anchors, num_classes = pred_scores.shape
        _, num_max_boxes, _ = gt_bboxes.shape

        # negative batch
        if num_max_boxes == 0:
            assigned_labels = paddle.full(
                [batch_size, num_anchors], bg_index, dtype=gt_labels.dtype)
            assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
            assigned_scores = paddle.zeros(
                [batch_size, num_anchors, num_classes])
            return assigned_labels, assigned_bboxes, assigned_scores

        # compute iou between gt and pred bbox, [B, n, L]
        ious = batch_iou_similarity(gt_bboxes, pred_bboxes)
        # gather pred bboxes class score
        pred_scores = pred_scores.transpose([0, 2, 1])
        batch_ind = paddle.arange(
            end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
        gt_labels_ind = paddle.stack(
            [batch_ind.tile([1, num_max_boxes]), gt_labels.squeeze(-1)],
            axis=-1)
        bbox_cls_scores = paddle.gather_nd(pred_scores, gt_labels_ind)
        # compute alignment metrics, [B, n, L]
        alignment_metrics = bbox_cls_scores.pow(self.alpha) * ious.pow(
            self.beta)

        # check the positive sample's center in gt, [B, n, L]
        is_in_gts = check_points_inside_bboxes(anchor_points, gt_bboxes)

        # select topk largest alignment metrics pred bbox as candidates
        # for each gt, [B, n, L]
        is_in_topk = gather_topk_anchors(
            alignment_metrics * is_in_gts, self.topk, topk_mask=pad_gt_mask)

        # select positive sample, [B, n, L]
        mask_positive = is_in_topk * is_in_gts * pad_gt_mask

        # if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected, [B, n, L]
        mask_positive_sum = mask_positive.sum(axis=-2)
        if mask_positive_sum.max() > 1:
            mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
                [1, num_max_boxes, 1])
            is_max_iou = compute_max_iou_anchor(ious)
            mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
                                         mask_positive)
            mask_positive_sum = mask_positive.sum(axis=-2)
        assigned_gt_index = mask_positive.argmax(axis=-2)

        # assigned target
        assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
        assigned_labels = paddle.gather(
            gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
        assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
        assigned_labels = paddle.where(
            mask_positive_sum > 0, assigned_labels,
            paddle.full_like(assigned_labels, bg_index))

        assigned_bboxes = paddle.gather(
            gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
        assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])

        assigned_scores = F.one_hot(assigned_labels, num_classes + 1)
        ind = list(range(num_classes + 1))
        ind.remove(bg_index)
        assigned_scores = paddle.index_select(
            assigned_scores, paddle.to_tensor(ind), axis=-1)
        # rescale alignment metrics
        alignment_metrics *= mask_positive
        max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True)
        max_ious_per_instance = (ious * mask_positive).max(axis=-1,
                                                           keepdim=True)
        alignment_metrics = alignment_metrics / (
            max_metrics_per_instance + self.eps) * max_ious_per_instance
        alignment_metrics = alignment_metrics.max(-2).unsqueeze(-1)
        assigned_scores = assigned_scores * alignment_metrics

        return assigned_labels, assigned_bboxes, assigned_scores

o2f用于端对端密集检测的1对少量标签分配策略

原理介绍

这是2023年CVPR(虽然我读完很怀疑。。。可能是我没体会到精妙之处),它的动机是这样的:它想去除NMS这个步骤,之所以要NMS是因为训练的时候一个GT会匹配到多个正样本,除了最正的那个正样本之外,其它的正样本都叫ambiguous sample,这些ambiguous sample作者认为一开始可以对分类loss的贡献应该随着训练的推移减少,它对应的分类标签值要逐渐降低,如下图所示:
详解ATSS、SimOTA、taskAligned、o2f标签分配,深度学习笔记,目标检测,深度学习,目标检测标签分配
然后它这个标签分配算法跟TOOD贼像,流程是一样的,就是计算分数的时候有差别:

详解ATSS、SimOTA、taskAligned、o2f标签分配,深度学习笔记,目标检测,深度学习,目标检测标签分配
然后它这个归一化的时候改了下,让ambiguous sample的标签值逐渐降低,核心就是这一点。我在TaskAligned的基础上改成了这种标签计算方式,初步效果变差,继续探索中。。。总觉得这文章说的不详细,也没多少实验。
详解ATSS、SimOTA、taskAligned、o2f标签分配,深度学习笔记,目标检测,深度学习,目标检测标签分配文章来源地址https://www.toymoban.com/news/detail-651623.html

到了这里,关于详解ATSS、SimOTA、taskAligned、o2f标签分配的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】如何分配训练集、验证集、测试集比例

    对于传统机器学习阶段(数据集在万这个数量级),一般分配比例为训练集和测试集的比例为7:3或是8:2。为了进一步降低信息泄露同时更准确的反应模型的效能,更为常见的划分比例是训练集、验证集、测试的比例为6:2:2。 对于小规模样本集(几万量级),常用的分配比例

    2024年02月15日
    浏览(42)
  • 【论文阅读】通过对比聚类分配的深度多视图聚类

    原文链接 对于大多数现有的深度MVC方法, 探索多视图的不变表示 仍然是一个棘手的问题。在本文中,提出了一种 跨视图对比学习(CVCL)方法 ,该方法学习视图不变表示,并通过比较多个视图之间的聚类分配来产生聚类结果。 具体来说,首先在预训练阶段使用深度自编码器提

    2024年02月21日
    浏览(46)
  • 深度强化学习与人工智能:如何实现高效的资源分配

    深度强化学习(Deep Reinforcement Learning, DRL)是一种人工智能技术,它结合了深度学习和强化学习两个领域的优点,以解决复杂的决策问题。在过去的几年里,DRL已经取得了显著的成果,例如在游戏、机器人控制、自动驾驶等领域的应用。在资源分配方面,DRL可以帮助企业更有效地

    2024年02月21日
    浏览(64)
  • Mysql用户权限分配详解

    相信对于绝大多数开发人员都接触过数据库,当今最常用的关系型数据库有 Mysql、Oracle、PostgreSql、SQLserver ,本文重点讲解 Mysql 用户权限的分配、管理。用户权限在实际开发中有什么用途呢?总结作用如下: 一、可以根据登录用户限制用户访问资源( 库、表 ) 二、可以根据登

    2024年02月05日
    浏览(34)
  • 详解C语言—动态内存分配(二)

    目录 前言: 几个经典的例题题 例一: 例二: 例三: 例四: 例五:   C/C++程序的内存开辟 柔性数组 柔性数组的特点: 柔性数组的使用:  柔性数组的代替: 柔性数组的优势: 小结: 希望在复习完详解C语言—动态内存分配(一)​​​​​​​,阅读此篇文章会进一步提升

    2024年02月08日
    浏览(48)
  • C++每日一练:任务分配问题(详解)

    今天这题比较有意思,排序算法还是比较有用的,显然选择排序在这里很容易实现。 提示:以下是本篇文章正文内容,下面案例可供参考 题目描述: 小明手头上有n个问题,每个问题都有一个数值,表示这个问题的难度;正好小明团队有n个人,每个人都有一个数值,表示这

    2023年04月26日
    浏览(39)
  • 【ElasticSearch】分片分配策略详解(设计目标&执行策略)

    集群由多个节点组成,每个节点上有多个索引 Elasticsearch 索引实际上只是一个或多个物理分片的逻辑分组,其中每个分片实际上是一个独立的索引。分片上的段文件是实际存储的数据。分为主、副,索引中主分片的数量在创建索引时是固定的,但副本分片的数量可以随时更改

    2024年04月27日
    浏览(38)
  • PTA L1-049 天梯赛座位分配(详解)

    前言:内容包括:题目,代码实现,大致思路,代码解读 天梯赛每年有大量参赛队员,要保证同一所学校的所有队员都不能相邻,分配座位就成为一件比较麻烦的事情。为此我们制定如下策略:假设某赛场有 N 所学校参赛,第 i 所学校有 M[i] 支队伍,每队 10 位参赛选手。令

    2024年02月03日
    浏览(46)
  • Newifi mini怎么分配静态IP地址?Newifi mini的静态IP地址分配方法详解

    Newifi mini的静态IP地址怎么分配?诸位联想新路由Newifi mini的用户们,大家知道Newifi mini的静态IP地址怎么分配吗?下面yii666小编就来教大家Newifi mini的静态IP地址分配教程,让打击可以无限制的给自己的路由器内各台电脑设置静态IP地址,上网工作什么的更方便啦! DHCP服务有动

    2024年02月08日
    浏览(39)
  • (9-8)基于深度强化学习的量化交易策略(OpenAI Baselines +FinRL+DRL+PyPortfolioOpt):最小方差投资组合分配

    1.1.11  最小方差投资组合分配 最小方差投资组合分配是一种通过优化投资组合权重,以最小化整个投资组合的方差(波动性)的方法。这种方法旨在构建一个投资组合,使其在给定一组资产的情况下,具有最小的风险。通过调整不同资产在投资组合中的权重,以达到整体风险

    2024年02月22日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包