【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】

这篇具有很好参考价值的文章主要介绍了【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


【获取资源请见文章第5节:资源获取】


1. 原始BWO算法

白鲸优化算法 (BWO,beluga whale optimization) 是2022 年在白鲸游泳、捕鲸及跌倒等行为中得到启发而提出的一种新型基于种群的元启发式算法。BWO 主要对白鲸游泳、捕食及跌倒 (坠落) 等行为进行模拟,其对应探索、开发及鲸鱼坠落三个阶段。BWO 当中鲸落概率与平衡因子均为自适应的,对开发能力与控制搜索起到决定性作用。除此之外,在开发阶段引入 Levy 飞行策略来进一步提升该阶段的全局收敛性。

【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化

【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化

【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化

2. 改进后的EBWO算法

2.1 准反向学习QOBL策略

准反向学习QOBL策略是一种强大的策略,被广泛运用于多种群智能算法中,以提高算法的迭代速度。QOBL策略主要涉及以下两个公式:
X i , j t + 1 = C i , j + ( X i , j o − C i , j ) × r a n d (1) X_{i,j}^{t+1}=C_{i,j}+(X_{i,j}^{o}-C_{i,j})\times rand\tag1 Xi,jt+1=Ci,j+(Xi,joCi,j)×rand(1)
X i , j t + 1 = C i , j + ( C i , j − X i , j o ) × r a n d (2) X_{i,j}^{t+1}=C_{i,j}+(C_{i,j}-X_{i,j}^{o})\times rand\tag2 Xi,jt+1=Ci,j+(Ci,jXi,jo)×rand(2)
其中, X i , j o X_{i,j}^{o} Xi,jo X i , j X_{i,j} Xi,j的镜像反向解, C i , j C_{i,j} Ci,j是第 j j j维变量的上下限的中心值, X i , j t + 1 X_{i,j}^{t+1} Xi,jt+1即为根据QOBL策略生成的新的反向解,根据一定规则采用公式(1)还是公式(2)来生成该解。

对于生成的新解,只保留优于原先解的新解,否则,丢弃。

2.2 旋风觅食策略

旋风觅食策略(CFS)是从种群围绕最优解的螺旋运动中概念化出来的策略,在蝠鲼优化算法中也被用到。CFS策略可以加强BWO算法的开发阶段,即种群可以围绕最佳解决方案以螺旋方向移动,使得后面的白鲸个体可以游向前面的白鲸个体。图1展示了种群螺旋移动的轨迹。
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化

图1 白鲸种群的CFS移动轨迹

白鲸种群CFS移动的公式可以表示如下:

【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
其中, β \beta β表示一个权重系数,和迭代次数有关。 r 8 r_{8} r8是[0,1]之间的随机值。 X b e s t t X_{best}^{t} Xbestt为上一次迭代的最优个体, X i t X_{i}^{t} Xit为原先的第 i i i个白鲸个体, X i t + 1 X_{i}^{t+1} Xit+1为更新后的新个体。

与第一个策略一样,更新的个体同样要进行贪婪选择。

3. 部分代码展示

Function_name = 'F1'; % 测试函数名
Npop = 30;      % 种群个数
Max_it = 500;  % 最大迭代次数
[lb,ub,nD,fobj]=Get_Functions_details(Function_name);
[xposbest_BWO,fvalbest_BWO,Curve_BWO]=BWO(Npop,Max_it,lb,ub,nD,fobj); % 白鲸优化算法 
[fvalbest_GWO,xposbest_GWO,Curve_GWO]=GWO(Npop,Max_it,lb,ub,nD,fobj); % 灰狼优化算法
[fvalbest_WOA,xposbest_WOA,Curve_WOA]=WOA(Npop,Max_it,lb,ub,nD,fobj); % 鲸鱼优化算法
[fvalbest_SSA,xposbest_SSA,Curve_SSA]=SSA(Npop,Max_it,lb,ub,nD,fobj); % 麻雀搜索算法
[xposbest_EBWO,fvalbest_EBWO,Curve_EBWO]=EBWO(Npop,Max_it,lb,ub,nD,fobj); % 改进白鲸优化算法


figure('Position',[454   445   694   297]);
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])


subplot(1,2,2);
% 灰狼优化算法
semilogy(Curve_GWO,'Color','b','LineWidth',2)
hold on
% 鲸鱼优化算法
semilogy(Curve_WOA,'Color','g','LineWidth',2)
hold on
% 麻雀搜索算法
semilogy(Curve_SSA,'Color','m','LineWidth',2)
hold on
% 白鲸优化算法
semilogy(Curve_BWO,'Color','k','LineWidth',2)
hold on
% 改进白鲸优化算法
semilogy(Curve_EBWO,'Color','r','LineWidth',2)
title(Function_name)
xlabel('Iteration');
ylabel('Best fitness function');
axis tight
legend('GWO','WOA','SSA','BWO','EBWO')

4. 仿真结果展示

【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化
【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】,Matlab,#群智能算法改进,matlab,算法,启发式算法,人工智能,性能优化

5. 资源获取

可以获取完整代码资源。文章来源地址https://www.toymoban.com/news/detail-651791.html

到了这里,关于【群智能算法改进】一种改进的白鲸优化算法 改进白鲸优化算法 改进后的EBWO[2]算法【Matlab代码#42】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[2]【Matlab代码#58】

    此算法详细介绍请参考POA算法介绍 2.1 随机对立学习种群初始化 采用随机方法初始化POA种群,生成的种群不均匀,影响了收敛速度和精度。为了获得更好的初始种群,本文采用了随机对立学习策略来进行种群初始: X i , n e w = ( l + u ) − k X i (1) X_{i,new}=(l+u)-kX_{i}tag1 X i , n e w

    2024年02月09日
    浏览(43)
  • 【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[1]【Matlab代码#57】

    此算法详细介绍请参考POA算法介绍 2.1 Sine映射种群初始化 混沌映射可以使种群在搜索空间中的分布更加均匀,因此被广泛使用。其中,Sine映射是一种不错的映射方式,其数学表达式为: x n + 1 = a 4 s i n ( π ∗ x n ) (1) x_{n+1}=frac{a}{4}sin(pi*x_{n})tag1 x n + 1 ​ = 4 a ​ s in ( π ∗

    2024年02月09日
    浏览(45)
  • 【群智能算法改进】一种改进的蜜獾算法 IHBA算法[1]【Matlab代码#62】

    蜜獾算法(Honey Badger Algorithm,HBA)是模仿蜜獾觅食行为而形成的一种优化算法。为了定位食物来源,蜜獾通常有两种方式,一是通过闻和挖,二是通过跟着导蜜鸟的方式。 在蜜獾算法中,我们将第一种情况称为挖掘模式,第二种是蜂蜜模式。在前一种模式中,它利用自己的

    2024年02月22日
    浏览(38)
  • 智能优化算法:白鲸优化算法-附代码

    摘要:白鲸优化算法([Beluga whale optimization,BWO)是由是由 Changting Zhong 等于2022 年提出的一种群体智能优化算法。其灵感来源于白鲸的群体觅食行为。 BWO建立了探索、开发和鲸鱼坠落的三个阶段,分别对应于成对游泳、捕食和鲸落的行为。BWO中的平衡因子和鲸落概率是自适应的

    2023年04月08日
    浏览(66)
  • 【DDoS攻击检测】基于改进的非洲秃鹫优化算法和一种新的DDoS攻击检测传递函数的特征选择方法(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 ​ 🎉3 参考文献 🌈4 Matlab代码实现 物联

    2024年02月13日
    浏览(42)
  • 多元回归预测 | Matlab白鲸算法(BWO)优化BP神经网络回归预测,BWO-BP回归预测,多变量输入模型

    效果一览 文章概述 多元回归预测 | Matlab白鲸算法(BWO)优化BP神经网络回归预测,BWO-BP回归预测,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码

    2024年02月06日
    浏览(45)
  • 【第一期】改进群体智能优化算法终结者,将近3000个改进策略+1万种改进算法!!!

    摘要 本期内容共包含2816种改进方案,配合5个群体智能优化算法,实现1万多个改进算法的生成。 本期改进的算法为:灰狼优化算法(GWO)、哈里斯鹰优化算法(HHO)、蚁狮优化算法(ALO)、白鹭群优化算法(ESOA)、平衡优化器算法(EO) 【安安讲代码】版权所有,盗版必究

    2024年02月04日
    浏览(44)
  • 【核心复现】基于改进鲸鱼优化算法的微网系统能量优化管理matlab

    目录 一、主要内容 1 冷热电联供型微网系统 2 长短期记忆网络(Long Short Term Memory, LSTM) 3 改进鲸鱼优化算法 二、部分代码 三、运行结果 四、下载链接  该程序为《基于改进鲸鱼优化算法的微网系统能量优化管理》matlab代码,主要内容如下: 针对包含多种可再生能源的冷热

    2024年01月21日
    浏览(51)
  • SCA|可作为有效改进策略的算法——正余弦优化算法(Matlab/Python)

    正余弦优化算法(Sine cosine algorithm,SCA)是由Mirjalili [1]在2016年提出,目前WOS上引用量2K+,谷歌学术上4K+。 不得不说Seyedali Mirjalili真是位大神级的人物(下图是Mirjalili开发的部分算法) SCA的核心思想是利用正、余弦函数波动的周期性,在全局范围内探索最优解,使算法逐步收敛。

    2024年01月22日
    浏览(40)
  • BWO白鲸优化算法

    ​白鲸算法(BWO)是一种新的元启发式算法,是一种基于群体的算法,其灵感来自于白鲸的行为,包括游泳,猎物和鲸落。在BWO的数学模型中构建了勘探,开发和鲸落阶段,并在开发阶段利用Levy飞行函数来提高BWO的收敛能力。 ​由于BWO基于种群的机制,将白鲸作为搜索代理,每

    2024年03月25日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包