pytorch指定使用多个GPU

这篇具有很好参考价值的文章主要介绍了pytorch指定使用多个GPU。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

方式一:指定使用所有GPU

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = CreateModel()

model= nn.DataParallel(model)
model.to(device)

方式二:结合系统环境变量使用特定的GPU

CUDA_VISIBLE_DEVICES=1,3

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = CreateModel()

model= nn.DataParallel(model)
model.to(device)

方式三:直接指定特定的GPU

device = torch.device("cuda:1,3" if torch.cuda.is_available() else "cpu") ## specify the GPU id's, GPU id's start from 0.

model = CreateModel()

model= nn.DataParallel(model,device_ids = [1, 3])
model.to(device)

以上所有情况中,后面使用的数据都要映射到对应的GPU设备。

如果x,y是数据:文章来源地址https://www.toymoban.com/news/detail-651863.html

X.to(device)
y.to(device)

到了这里,关于pytorch指定使用多个GPU的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 完整教程:深度学习环境配置(GPU条件&pytorch)

    如果是python小白,强烈推荐B站小土堆的视频,讲得很清晰(但需要花些时间),地址如下: 最详细的 Windows 下 PyTorch 入门深度学习环境安装与配置 CPU GPU 版 如果有些基础,跟着往下看就行。 配置 作用 Anaconda 灵活切换python运行环境、高效使用python包 GPU 软硬件:硬件基础(

    2024年02月15日
    浏览(39)
  • Windows下PyTorch深度学习环境配置(GPU)

    (路径最好全英文) (下载好后,可以创建其他虚拟环境,因为是自己学习,所以先不放步骤,有需要者可以参考B站up我是土堆的视频) 1.确定显卡型号 (如图右上角,我是1050ti) 确定显卡算力 6.1 (更多CUDA和GPU间的算力关系可参考https://zhuanlan.zhihu.com/p/544337083?utm_id=0) 确

    2024年02月16日
    浏览(57)
  • 深度学习之python使用指定gpu运行代码

    1、在命令行使用 nvidia-smi 查看gpu设备情况,当存在空闲设备时才能用,否则会出现运行内存不够出错的情况(具体参考文章GPU之nvidia-smi命令详解); 2、安装好cuda和cudcnn(具体步骤请参考:①windows:CUDA安装教程(超详细)),②linux:linux安装CUDA+cuDNN) 在命令行输入 nvcc

    2024年02月16日
    浏览(32)
  • 【ONNX】使用 C++ 调用 ONNX 格式的 PyTorch 深度学习模型进行预测(Windows, C++, PyTorch, ONNX, Visual Studio, OpenCV)

    要使用 ONNX 模型进行预测,就需要使用 onnx runtime 首先到 ONNX 官网查询所需的版本 这里使用的 Windows,同时装了 CUDA 下面的链接可以进入到安装网址 https://www.nuget.org/packages/Microsoft.ML.OnnxRuntime.Gpu 安装命令为: 首先打开 Visual Studio 2019 新建一个用于测试的项目 右键点击项目,可

    2024年02月09日
    浏览(54)
  • Windows安装GPU环境CUDA、深度学习框架Tensorflow和Pytorch

    Windows安装GPU环境CUDA、深度学习框架Tensorflow和Pytorch 首先需要安装GPU环境,包括cuda和cudnn。 深度学习本质上就是训练深度卷积神经网络。 cuda:显卡能够完成并行计算任务,所有的操作是比较底层的、复杂的。 cudnn:在cuda之上有一个专门用于深度神经网络的SDK库来加速完成相

    2023年04月26日
    浏览(55)
  • 【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】

    提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 OpenCV是一个基于BSD许可发行的跨平台计算机视觉和机器学习软件库(开源),可以运行在Linux、Windows、Android和Mac OS操作系统上。可以将pytorch中训练好的模型使用ONNX导出,再使用opencv中的dnn模块直接进行

    2024年02月04日
    浏览(52)
  • win10跑深度学习程序无法调用gpu的问题(已解决)

    win10跑深度学习真的是一言难尽,但是windows系统又使用的比较习惯,过去使用过ubuntu系统,里面写文档什么的确实不习惯,所以自己做的实验项目也主要是以win10为主工具是常见的pycharm+anaconda+win10 采用的是keras2.3.1,更改了程序中一些代码之后,每次跑模型都会中断 记录一下

    2024年01月16日
    浏览(46)
  • 【深度学习环境搭建】Windows搭建Anaconda3、已经Pytorch的GPU版本

    无脑下载安装包安装(自行百度) 注意点: 1、用户目录下的.condarc需要配置(自定义环境的地址(别忘了给文件夹加权限);镜像源) 1、先看你的显卡版本 Win +R - 输入命令nvidia-smi,看你的cuda版本 2.下载离线版本安装包(在线也行,只要你有耐心) https://download.pytorch.org

    2024年02月02日
    浏览(63)
  • 2023最新WSL搭建深度学习平台教程(适用于Docker-gpu、tensorflow-gpu、pytorch-gpu)

    2023-4-11 对于机器学习er配置环境一直是个头疼的事,尤其是在windows系统中。尤其像博主这样的懒人,又不喜欢创建虚拟环境,过段时间又忘了环境和包的人,经常会让自己电脑里装了各种深度学习环境和python包。长时间会导致自己的项目文件和环境弄的很乱。且各个项目间的

    2024年02月05日
    浏览(49)
  • (纯小白向)Windows配置GPU深度学习环境:Cuda+Anaconda+pytorch+Vscode

    目录 一、Cuda和Cudnn下载安装 1.1 确定自己的电脑显卡驱动支持的Cuda版本 1.2 Cuda下载与安装 1.3 Cudnn下载与安装 二、Anaconda下载安装 2.1 下载 2.2 安装 2.3 手动配置环境变量 2.4 测试是否安装成功 三、Pytorch下载安装 3.1 创建conda虚拟环境 3.2 Pytorch下载 四、Vscode下载与环境配置 4.1

    2024年02月05日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包