YOLOv8 : 网络结构

这篇具有很好参考价值的文章主要介绍了YOLOv8 : 网络结构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一. YOLOv8网络结构

1. Backbone

YOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。

如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比图2的YOLOv5结构图,可以看到基本的架构是类似的。

这里值得注意的是,很多博文中写到YOLOv8使用了CSPDarkNet53作为backbone,当然是可以用的,但是官方代码中明显不是套用的CSPDarkNet53网络结构。事实上,YOLOv5的主干也并非是CSPDarkNet53网络。

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图1 YOLOv8网络架构

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图2 YOLOv5网络架构

2. Neck

YOLOv8的Neck使用的也是类似于YOLOv5的PAN-FPN,称作双流FPN,高效,速度快。

3. Head

与之前的YOLOv6,YOLOX类似,使用了Decoupled Head,YOLOv3、YOLOv4、YOLOv5均使用Coupled Head。

YOLOv8也使用3个输出分支,但是每一个输出分支又分为2部分,分别来分类和回归边框(参照图1的Decoupled Head)。

二. 细说Backbone

前面讲到,YOLOv8的Backbone类似于YOLOv5的Backbone,不同点是将C3换成了C2F,以及将第一个Convolution层设置为kernel size等于3,stride为2(YOLOv5的Kernel Size为6,padding为2)。

1. C2F与C3对比

那么C2F与C3单元相比,有什么优势呢?我们先上各自的网络结构图。如图3为C3结构图,图4为C2F结构图。

图4中,每一个Bottleneck的输入Tensor的Channel都只有上一级的0.5倍,因此计算量明显降低。从另一方面讲,梯度流的增加,也能够明显提升收敛速度和收敛效果。

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图3 C3单元

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图4 C2F单元

2. Bottleneck

YOLOv8的C2F使用了Bottleneck单元,但需要注意的是,Darknet所引入的Bottleneck不同于ResNet的Bottleneck。如图5和图6分别为Darknet的Bottleneck和ResNet的Bottelneck。

由图5和图6可以看出,Darknet的Bottleneck单元并未使用最后的1*1卷积进行通道的恢复,而是直接在中间的3*3卷积中进行了恢复。

此处大家进记住一点即可,Bottleneck可以大大减少参数,降低计算量。

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图5 Darknet Bottleneck

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图6 ResNet Bottleneck

三. Neck

YOLOv8的Neck采用了PANet结构。如图7为网络局部图。

由图7可以看出,Backbone最后经过了一个SPPF(SPP Fast,图示Layer9),之后H和W已经经过了32被的下采样。对应的,Layer4经过了8被下采样,Layer6经过了16背的下采样。设定输入为640*640,得到Layer4、Layer6、Layer9的分辨率分别为80*80、40*40和20*20。

Layer4、Layer6、Layer9作为PANnet结构的输入,经过上采样,通道融合,最终将PANet的三个输出分支送入到Detect head中进行Loss的计算或结果解算。

与FPN(单向,自上而下)不同,PANet是一个双向通路网络。与FPN相比,PANet引入了自下向上的路径,使得底层信息更容易传递到高层顶部(红色曲线标注路线)。

YOLOv8 : 网络结构,YOLOv8,YOLO,计算机视觉,目标检测

图7 YOLOv8 Neck(PANet)

四. Detect Head

YOLOv8采用了类似于YOLOX的Decoupled Head,将回归分支和预测分支进行分离。Decoupled Head的有点可以参考YOLOX的论文中提到的,收敛更快,效果更好。

需要特别提及的是,YOLOv8的Detect Head中,针对回归分支使用了DFL策略,之前的目标检测网络将回归坐标作为一个确定性单值进行预测,DFL将坐标转变成了一个分布。

DFL理论主要用来解决边界模糊的问题。详细了解可以参考论文“Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection”。文章来源地址https://www.toymoban.com/news/detail-652080.html

到了这里,关于YOLOv8 : 网络结构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLO系列 --- YOLOV7算法(四):YOLO V7算法网络结构解析

    今天来讲讲YOLO V7算法网络结构吧~ 在 train.py 中大概95行的地方开始创建网络,如下图(YOLO V7下载的时间不同,可能代码有少许的改动,所以行数跟我不一定一样) 我们进去发现,其实就是在 yolo.py 里面。后期,我们就会发现相关的网络结构都是在该py文件里面。这篇blog就主

    2024年02月05日
    浏览(46)
  • 深入浅出 Yolo 系列之 Yolov7 基础网络结构详解

    从 2015 年的 YOLOV1 ,2016 年 YOLOV2 , 2018 年的 YOLOV3 ,到 2020 年的 YOLOV4 、 YOLOV5 , 以及最近出现的 YOLOV76 和 YOLOV7 可以说 YOLO 系列见证了深度学习时代目标检测的演化。对于 YOLO 的基础知识以及 YOLOV1 到 YOLOV5 可以去看大白的 YOLO 系列,本文主要对 YOLOV7 的网络结构进行一个梳理

    2024年02月04日
    浏览(48)
  • 【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构

    【注】: 本文为YOLOv5、YOLOX、YOLOv6、YOLOv7模型结构图,作图软件为drawio。因精力有限暂时不做结构的详细阐述和具体的代码讲解,后续有机会再做补充。如有需要可以查阅其他博主的文章了解学习。 【另】:希望模型结构图可以帮助到有需要的人,如模型中有错误的地方,欢

    2024年02月07日
    浏览(42)
  • 芒果改进YOLOv8系列:改进特征融合网络 BiFPN 结构,融合更多有效特征

    芒果改进YOLOv8系列:改进特征融合网络 BiFPN 结构,融合更多有效特征 在这篇文章中, 将 BiFPN 思想加入到 YOLOv8 结构中 该版本为高效简洁版,涨点多、还速度快(实际效果反馈) 本篇博客 不占用 高阶专栏的总篇数计划中 应之前群友的要求,加一个 《补充篇》 ,仅仅是补充

    2024年02月07日
    浏览(60)
  • YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py

    在上一篇中,我们简单介绍了YOLOv5的配置文件之一 yolov5s.yaml ,这个文件中涉及很多参数,它们的调用会在这篇 yolo.py 和下一篇 common.py 中具体实现。 本篇我们会介绍 yolo.py ,这是YOLO的特定模块,和网络构建有关。 在 YOLOv5源码中,模型的建立是依靠 yolo.py 中的函数和对象完

    2023年04月15日
    浏览(78)
  • 改进YOLOv5:自研网络新结构,可作为创新点 | ALFNet YOLO | 创新必备

    在计算机视觉领域,深度学习已经取得了显著的进展,尤其是在目标检测任务中。然而,随着网络结构不断加深和复杂化#

    2024年02月03日
    浏览(57)
  • YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

    本篇文章的内容是在大家得到一个 改进版本的 C2f一个新的注意力机制、或者一个新的卷积模块、或者是检测头的时候如何 替换我们YOLOv8模型中的原有的模块 ,从而用你的模块去进行训练模型或者检测。因为最近开了一个专栏里面涉及到挺多改进的地方,不能每篇文章都去讲

    2024年02月05日
    浏览(66)
  • 计算机网络第一章——计算机网络系统结构(下)

    提示:总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉哉。 问题很庞大,将大问题分成小问题,对应一个层次 实体指的是每层中的活动元素,任何可以发送或者接受信息的硬件或者软件进程 只有对等的实体之间才有协议,不对等的实体之间是不存在协议的

    2024年02月07日
    浏览(51)
  • 笔记1.2 计算机网络结构

    网络边缘 主机、网络应用 接入网络,物理介质 有线或无线通信链路 网络核心(核心网络): 互联的路由器(或分组转发设备) 网络之网络 主机(端系统): 位于\\\"网络边缘\\\" 运行网络应用程序 客户/服务器(client/server)应用模型: 客户发送请求,接收服务器响应 如:we

    2024年02月07日
    浏览(41)
  • 计算机网络第一章——计算机体系结构(上)

    提示:剑未佩妥,出门已是江湖;酒尚余温,入口不识乾坤,愿历尽千帆,归来仍是少年。 电信网络就是通过电话线连接起来的一个网络,有线电视网络通过电缆或者光缆将已经录制好的电视节目发给千家万户,计算机网络是通过各个结点,这个结点包括终端的电脑,手机,

    2024年02月06日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包