神经网络基础-神经网络补充概念-37-其他正则化方法

这篇具有很好参考价值的文章主要介绍了神经网络基础-神经网络补充概念-37-其他正则化方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概念

L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。

L2 正则化(Ridge Regularization):L2 正则化通过在损失函数中添加参数的平方和作为惩罚项,使得参数值保持较小。适用于减小参数大小,减轻参数之间的相关性。

弹性网络正则化(Elastic Net Regularization):弹性网络是 L1 正则化和 L2 正则化的结合,综合了两者的优势。适用于同时进行特征选择和参数限制。

数据增强(Data Augmentation):数据增强是通过对训练数据进行随机变换来扩展数据集,以提供更多的样本。这有助于模型更好地泛化到不同的数据变化。

早停(Early Stopping):早停是一种简单的正则化方法,它通过在训练过程中监控验证集上的性能,并在性能不再改善时停止训练,从而避免模型过拟合训练数据。

批标准化(Batch Normalization):批标准化是一种在每个小批次数据上进行标准化的技术,有助于稳定网络的训练,减少内部协变量偏移,也可以视为一种正则化方法。

权重衰减(Weight Decay):权重衰减是在损失函数中添加参数的权重平方和或权重绝对值之和,以限制参数的大小。

DropConnect:类似于 Dropout,DropConnect 随机地将神经元与其输入连接断开,而不是将神经元的输出置为零。文章来源地址https://www.toymoban.com/news/detail-652096.html

代码实现

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler

# 加载数据
data = load_iris()
X = data.data
y = data.target

# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = keras.utils.to_categorical(y, num_classes=3)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义模型
def build_model(regularization=None):
    model = keras.Sequential([
        layers.Input(shape=(X_train.shape[1],)),
        layers.Dense(64, activation='relu', kernel_regularizer=regularization),
        layers.Dense(32, activation='relu', kernel_regularizer=regularization),
        layers.Dense(3, activation='softmax')
    ])
    return model

# L1 正则化
model_l1 = build_model(keras.regularizers.l1(0.01))
model_l1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_l1.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)

# L2 正则化
model_l2 = build_model(keras.regularizers.l2(0.01))
model_l2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_l2.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)

# 弹性网络正则化
model_elastic = build_model(keras.regularizers.l1_l2(l1=0.01, l2=0.01))
model_elastic.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_elastic.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)

# 早停(Early Stopping)
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model_early = build_model()
model_early.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_early.fit(X_train, y_train, epochs=100, batch_size=8, validation_split=0.1, callbacks=[early_stopping])

# 评估模型
print("L1 Regularization:")
model_l1.evaluate(X_test, y_test)

print("L2 Regularization:")
model_l2.evaluate(X_test, y_test)

print("Elastic Net Regularization:")
model_elastic.evaluate(X_test, y_test)

print("Early Stopping:")
model_early.evaluate(X_test, y_test)

到了这里,关于神经网络基础-神经网络补充概念-37-其他正则化方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 神经网络基础-神经网络补充概念-02-逻辑回归

    逻辑回归是一种用于二分分类问题的统计学习方法,尽管名字中带有\\\"回归\\\"一词,但实际上它用于分类任务。逻辑回归的目标是根据输入特征来预测数据点属于某个类别的概率,然后将概率映射到一个离散的类别标签。 逻辑回归模型的核心思想是将线性回归模型的输出通过一

    2024年02月12日
    浏览(41)
  • 神经网络基础-神经网络补充概念-20-激活函数

    激活函数是神经网络中的一个重要组成部分,它引入了非线性性质,使得神经网络可以学习和表示更复杂的函数关系。激活函数对于将输入信号转换为输出信号起到了关键作用,它在神经元的计算过程中引入了非线性变换。 Sigmoid函数: Sigmoid 函数将输入映射到一个 0 到 1 的

    2024年02月12日
    浏览(47)
  • 神经网络基础-神经网络补充概念-62-池化层

    池化层(Pooling Layer)是深度学习神经网络中常用的一种层级结构,用于减小输入数据的空间尺寸,从而降低模型的计算复杂度,减少过拟合,并且在一定程度上提取输入数据的重要特征。池化层通常紧跟在卷积层之后,用于缩小卷积层输出的尺寸。 常见的池化操作包括最大

    2024年02月12日
    浏览(51)
  • 神经网络基础-神经网络补充概念-48-rmsprop

    RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。 RMSProp的核心思想是根据参数梯度的历史

    2024年02月12日
    浏览(47)
  • 神经网络基础-神经网络补充概念-59-padding

    在深度学习中,“padding”(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。 主要目的是为了解决卷积层或池化层等操作对输入尺寸的影

    2024年02月12日
    浏览(50)
  • 神经网络基础-神经网络补充概念-01-二分分类

    二分分类是一种常见的机器学习任务,其目标是将一组数据点分成两个不同的类别。在二分分类中,每个数据点都有一个与之关联的标签,通常是“正类”或“负类”。算法的任务是根据数据点的特征来学习一个模型,以便能够准确地将新的未标记数据点分配到正确的类别中

    2024年02月13日
    浏览(45)
  • 神经网络基础-神经网络补充概念-60-卷积步长

    在深度学习中,卷积步长(convolution stride)是指在卷积操作中滑动卷积核的步幅。卷积操作是神经网络中常用的操作之一,用于从输入数据中提取特征。步长决定了卷积核在输入数据上的滑动间隔,从而影响输出特征图的大小。 卷积步长的值可以是正整数,通常为1、2、3等。

    2024年02月12日
    浏览(52)
  • 神经网络基础-神经网络补充概念-56-迁移学习

    迁移学习(Transfer Learning)是一种机器学习技术,旨在将在一个任务上学到的知识或模型迁移到另一个相关任务上,以提高新任务的性能。迁移学习的核心思想是通过利用源领域(source domain)的知识来改善目标领域(target domain)的学习任务。 迁移学习的优势在于可以充分利

    2024年02月12日
    浏览(43)
  • 神经网络基础-神经网络补充概念-17-计算神经网络的输出

    计算神经网络的输出通常涉及前向传播(Forward Propagation)的过程,其中输入数据通过网络的层级结构,逐步被传递并变换,最终生成预测结果。下面我将为你展示一个简单的神经网络前向传播的示例。 假设我们有一个具有以下参数的简单神经网络: 输入层:2个神经元 隐藏

    2024年02月12日
    浏览(42)
  • 神经网络基础-神经网络补充概念-54-softmax回归

    Softmax回归(Softmax Regression)是一种用于多分类任务的机器学习算法,特别是在神经网络中常用于输出层来进行分类。它是Logistic回归在多分类问题上的推广。 Softmax回归的主要思想是将原始的线性分数(得分)转化为类别概率分布,使得模型可以对多个类别进行分类。在Soft

    2024年02月12日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包