概念
L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。
L2 正则化(Ridge Regularization):L2 正则化通过在损失函数中添加参数的平方和作为惩罚项,使得参数值保持较小。适用于减小参数大小,减轻参数之间的相关性。
弹性网络正则化(Elastic Net Regularization):弹性网络是 L1 正则化和 L2 正则化的结合,综合了两者的优势。适用于同时进行特征选择和参数限制。
数据增强(Data Augmentation):数据增强是通过对训练数据进行随机变换来扩展数据集,以提供更多的样本。这有助于模型更好地泛化到不同的数据变化。
早停(Early Stopping):早停是一种简单的正则化方法,它通过在训练过程中监控验证集上的性能,并在性能不再改善时停止训练,从而避免模型过拟合训练数据。
批标准化(Batch Normalization):批标准化是一种在每个小批次数据上进行标准化的技术,有助于稳定网络的训练,减少内部协变量偏移,也可以视为一种正则化方法。
权重衰减(Weight Decay):权重衰减是在损失函数中添加参数的权重平方和或权重绝对值之和,以限制参数的大小。文章来源:https://www.toymoban.com/news/detail-652096.html
DropConnect:类似于 Dropout,DropConnect 随机地将神经元与其输入连接断开,而不是将神经元的输出置为零。文章来源地址https://www.toymoban.com/news/detail-652096.html
代码实现
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
# 加载数据
data = load_iris()
X = data.data
y = data.target
# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = keras.utils.to_categorical(y, num_classes=3)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义模型
def build_model(regularization=None):
model = keras.Sequential([
layers.Input(shape=(X_train.shape[1],)),
layers.Dense(64, activation='relu', kernel_regularizer=regularization),
layers.Dense(32, activation='relu', kernel_regularizer=regularization),
layers.Dense(3, activation='softmax')
])
return model
# L1 正则化
model_l1 = build_model(keras.regularizers.l1(0.01))
model_l1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_l1.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)
# L2 正则化
model_l2 = build_model(keras.regularizers.l2(0.01))
model_l2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_l2.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)
# 弹性网络正则化
model_elastic = build_model(keras.regularizers.l1_l2(l1=0.01, l2=0.01))
model_elastic.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_elastic.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)
# 早停(Early Stopping)
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model_early = build_model()
model_early.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_early.fit(X_train, y_train, epochs=100, batch_size=8, validation_split=0.1, callbacks=[early_stopping])
# 评估模型
print("L1 Regularization:")
model_l1.evaluate(X_test, y_test)
print("L2 Regularization:")
model_l2.evaluate(X_test, y_test)
print("Elastic Net Regularization:")
model_elastic.evaluate(X_test, y_test)
print("Early Stopping:")
model_early.evaluate(X_test, y_test)
到了这里,关于神经网络基础-神经网络补充概念-37-其他正则化方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!