移动通信系统的LMS自适应波束成形技术matlab仿真

这篇具有很好参考价值的文章主要介绍了移动通信系统的LMS自适应波束成形技术matlab仿真。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

移动通信系统的LMS自适应波束成形技术matlab仿真,MATLAB算法开发,# 通信信号,matlab,移动通信,LMS自适应波束成形,波束成形

移动通信系统的LMS自适应波束成形技术matlab仿真,MATLAB算法开发,# 通信信号,matlab,移动通信,LMS自适应波束成形,波束成形

移动通信系统的LMS自适应波束成形技术matlab仿真,MATLAB算法开发,# 通信信号,matlab,移动通信,LMS自适应波束成形,波束成形

移动通信系统的LMS自适应波束成形技术matlab仿真,MATLAB算法开发,# 通信信号,matlab,移动通信,LMS自适应波束成形,波束成形

移动通信系统的LMS自适应波束成形技术matlab仿真,MATLAB算法开发,# 通信信号,matlab,移动通信,LMS自适应波束成形,波束成形

2.算法运行软件版本

matlab2022a

3.部分核心程序

.....................................................................
idxx=0;
while idxx<20
.....................................................................
    
    %信道生成

    receivedW = collectPlaneWave(GM.BSarray, [y_1*(1/sqrt(path_loss_t1)) y_2*(1/sqrt(path_loss_t2)) y_3*(1/sqrt(path_loss_i1)) y_3*(1/sqrt(path_loss_i2))], [t1Angles' t2Angles' i1Angles' i2Angles'], Pars.fc);
  
    %添加噪声
    chOut = awgn(receivedW, snr, 'measured');

     %在终端1上没有波束赋形的情况下计算BER
     subplot(3,2,3);
     title='终端1上没有波束赋形的星座图';
     bits=func_OFDM_demod(y_ofdm,chOut(:,end),NOrder,true,title);
     [numbError,ratio]=biterr(x_1,bits);
 
     
     %在终端2上没有波束赋形的情况下计算BER
     subplot(3,2,4);
     title='终端2上没有波束赋形的星座图';
     bits=func_OFDM_demod(y_ofdm,chOut(:,end),NOrder,true,title);
     [numbError,ratio]=biterr(x_2,bits);
 
     %相移波束赋形
  
    % 终端1通过PhaseShiftBeamformer进行波束赋形
    beamformerV1 = phased.PhaseShiftBeamformer('SensorArray',GM.BSarray,'OperatingFrequency',Pars.fc,'PropagationSpeed',Pars.c,'Direction',t1Angles','WeightsOutputPort',true);
    [y1,w1]      = beamformerV1(chOut);

     %在终端1上使用相移波束赋形的情况下计算BER
    subplot(3,2,5); 
    title='终端1上使用相移波束赋形的星座图';
    bits=func_OFDM_demod(y_ofdm,y1,NOrder,true,title);
    [numbError,ratio]=biterr(x_1,bits);
 
     
    % 终端2通过PhaseShiftBeamformer进行波束赋形
    beamformerV2 = phased.PhaseShiftBeamformer('SensorArray',GM.BSarray,'OperatingFrequency',Pars.fc,'PropagationSpeed',Pars.c,'Direction',t2Angles','WeightsOutputPort',true);
    [y2,w2] = beamformerV2(chOut);


     %使用LMS算法进行波束赋形
    subplot(3,2,6); 
    title='终端2上使用相移波束赋形的星座图';
    bits=func_OFDM_demod(y_ofdm,y2,NOrder,true,title);
    [numbError,ratio]=biterr(x_2,bits);
 
    
 
    figure(2);
    subplot(2,2,[1,2]);
    polarplot( deg2rad(az_t1),t1_dist_BS/max(t1_dist_BS,t2_dist_BS), 'or','LineWidth',1.5)
    hold on
    polarplot( deg2rad(az_t2),t2_dist_BS/max(t1_dist_BS,t2_dist_BS),'ob','LineWidth',1.5)
    hold on

    H=pattern(GM.BSarray,Pars.fc,[-180:180],el_t1,'PropagationSpeed',Pars.c,'Type','power','CoordinateSystem','polar','Weights',conj(w1));
    hold on 
    polarplot(H,'r')

    H=pattern(GM.BSarray,Pars.fc,[-180:180],el_t2,'PropagationSpeed',Pars.c,'Type','power','CoordinateSystem','polar','Weights',conj(w2));

    hold on 
    polarplot(H,'b')
   
   
    
    %计算LMS权重
    optimalWeight1 = func_LMS(chOut,y_1,numArray);  
    optimalWeight2 = func_LMS(chOut,y_2,numArray);   

    
    %将接收信号与权重相乘
    y1=chOut*((optimalWeight1));
    y2=chOut*((optimalWeight2));     
    
    %在终端1上使用LMS波束赋形的情况下计算BER
    subplot(2,2,3);
    title='终端1上使用LMS的星座图';
     bits=func_OFDM_demod(y_ofdm,(y1),NOrder,true,title);
    [numbError,ratio]=biterr(x_1,bits);
 
    
    %在终端2上使用LMS波束赋形的情况下计算BER
    subplot(2,2,4);
    title='终端2上使用LMS的星座图';
    bits=func_OFDM_demod(y_ofdm,(y2),NOrder,true,title);
    [numbError,ratio]=biterr(x_2,bits);
 
    pause(1);

end
0044

4.算法理论概述

        在移动通信系统中,由于信号传播环境的复杂性,通信信号受到多径效应、干扰和噪声的影响,导致信号质量下降。自适应波束成形技术可以在多天线接收端对信号进行处理,以增强感兴趣的信号,并抑制不需要的干扰和噪声。

        自适应波束成形技术的核心思想是通过调整多个天线的权重系数,使得在特定方向上的信号增益最大化,同时减小其他方向上的信号增益。其中,最小均方(LMS)算法是一种常用的自适应算法,用于计算权重系数。以下是LMS自适应波束成形的基本原理:

移动通信系统的LMS自适应波束成形技术matlab仿真,MATLAB算法开发,# 通信信号,matlab,移动通信,LMS自适应波束成形,波束成形

LMS自适应波束成形技术的实现过程包括以下步骤:

数据采集: 从多个天线接收信号,并对信号进行预处理,如去除直流分量等。

初始化权重: 初始时,设置权重向量的初始值,通常为随机值或单位向量。

计算输出: 根据当前权重向量和接收信号计算输出信号。

计算误差: 计算期望响应与实际输出之间的误差信号。

更新权重: 使用LMS算法更新权重向量的系数。

重复迭代: 重复进行2-5步骤,直至误差信号达到满意的水平或达到预设的迭代次数。

LMS自适应波束成形技术在移动通信系统中有广泛的应用,包括但不限于以下领域:

无线通信: 在多天线接收端,通过抑制干扰和多径效应,提高信号质量和通信效率。
无线局域网(WLAN): 用于提升Wi-Fi信号覆盖范围和稳定性。
无线传感器网络: 用于在复杂的信号环境中,准确地接收和识别传感器数据。

       LMS自适应波束成形技术是一种重要的信号处理方法,通过调整天线的权重系数,实现对特定方向上信号的增强和干扰的抑制。在移动通信系统中,它可以显著提升信号的质量和可靠性,适用于多种应用场景。

5.算法完整程序工程

OOOOO

OOO

O文章来源地址https://www.toymoban.com/news/detail-652129.html

到了这里,关于移动通信系统的LMS自适应波束成形技术matlab仿真的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 移动通信的频段

    LTE频段1(FDD频段1) 2100 MHz(也称为AWS) LTE频段2(FDD频段2) 1900 MHz LTE频段3(FDD频段3) 1800 MHz LTE频段4(FDD频段4) AWS-1(1700/2100 MHz) LTE频段5(FDD频段5) 850 MHz LTE频段7(FDD频段7) 2600 MHz(也称为IMT-E) LTE频段8(FDD频段8) 900 MHz LTE频段12(FDD频段12) 700 MHz LTE频段13(FDD频段

    2024年02月15日
    浏览(13)
  • 移动通信网络架构 1G-5G

    移动通信网络架构 1G-5G

    自20世纪80年代初第一代移动网络(1G)问世以来,移动无线通信在过去几十年里取得了许多进展。移动通信标准的这种演变是全球对更多用户和连接日益增长的需求的直接结果. 在本文中,我们将研究支撑这些移动技术的基础设施和组件——从1G一直到即将到来的5G。在本文末尾

    2023年04月12日
    浏览(9)
  • 移动通信网络规划:覆盖场景划分

    一、覆盖场景划分的意义 移动通信网络在实现广度覆盖的基础上,要想进一步提升网络质量,实现深度覆盖,就应该分场景讨论深度覆盖解决方案,网络深度覆盖相比从前更趋向于准确、精细、可发展的趋势,因此需要对不同覆盖场景进行分析,并选择最合理的覆盖技术和方

    2024年01月19日
    浏览(10)
  • 移动通信网络规划:无线设备参数

    移动通信网络规划:无线设备参数

    无线网络规划设计中,规划设计人员必须了解清楚各厂商的无线基站设备的外形尺寸和性能参数才能进行合理的设计,从而保证移动通信工程建设项目的顺利实施和达到预期的建网指标。 1、L TE基站设备的 一些相关参数 4G网络中无线基站设备主要包括BBU、RRU和天线。我们以中

    2024年02月04日
    浏览(9)
  • 全球移动通信市场,正在经历哪些新变化?

    全球移动通信市场,正在经历哪些新变化?

    2023年已经结束了。回顾这一年的全球移动通信市场,如果让我用一个词来总结,那就是——“厚积薄发”。 从表面上来看,似乎并没有什么大事情发生。但实际上,平静的湖面之下,却是一片波涛汹涌、风云激荡。 无论是消费互联网领域,还是行业互联网领域,通信网络都

    2024年01月18日
    浏览(10)
  • 《移动通信原理与应用》——QPSK调制解调仿真

    《移动通信原理与应用》——QPSK调制解调仿真

    目录 一、QPSK调制与解调流程图: 二、仿真运行结果:  三、MATLAB仿真代码:  QPSK调制流程图: QPSK解调流程图:    1、Figure1:为发送端比特流情况图:             从Figure1看出发送端发送的比特流信息…[ak,bk]…情况:奇数进入I路,偶数进入Q路。比特进入I路与Q路情况如

    2024年01月23日
    浏览(7)
  • EAP-AKA协议:保障移动通信安全的关键

    EAP-AKA协议:保障移动通信安全的关键

            移动通信在现代生活中扮演着至关重要的角色。为了确保通信的安全性和私密性,无线通信协议涌现出许多解决方案。其中之一就是EAP-AKA(Enhanced Authentication and Key Agreement)协议,它为移动通信提供了强大的安全性和认证机制。本文将深入探讨EAP-AKA协议的原理、

    2024年02月04日
    浏览(9)
  • 【OTFS论文阅读2】——《高速移动通信中 OTFS 信道估计研究 》

    【OTFS论文阅读2】——《高速移动通信中 OTFS 信道估计研究 》

    Channel Estimation in OTFS High-Speed Mobile Communication Systems 刘庆达 硕士毕业论文 #压缩感知CS信道估计算法 #分数多普勒 #SISO-OTFS #MIMO-OTFS #3D-SOMP 稀疏信号的观测值数量大大低于奈奎斯特定理得到的采样值数目,在减少导频数量的同时进行比较可靠有效的信道估计 (1) 对信号进行稀疏变

    2024年04月11日
    浏览(14)
  • K210识别数字(0~9)并与单片机通信通过数字来控制小车移动

    K210识别数字(0~9)并与单片机通信通过数字来控制小车移动

    前一段时间学习了K210的模型训练,又学会了K210的串口通信,于是冒出一个新奇的想法,用手势控制小车,手势识别可能比较难,于是想着先用数字控制小车。(懂得都懂)我相信有很多人再找这篇博客,希望大家可以看到这篇博客并帮助到你们。 方法也很简单,相信你看了

    2023年04月16日
    浏览(6)
  • ToBeWritten之IoT Web、移动应用、设备硬件、无线电通信、IoV威胁建模

    ToBeWritten之IoT Web、移动应用、设备硬件、无线电通信、IoV威胁建模

    也许每个人出生的时候都以为这世界都是为他一个人而存在的,当他发现自己错的时候,他便开始长大 少走了弯路,也就错过了风景,无论如何,感谢经历 转移发布平台通知:将不再在CSDN博客发布新文章,敬请移步知识星球 感谢大家一直以来对我CSDN博客的关注和支持,但

    2024年02月01日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包