【论文合集】CVPR2023年 部分论文

这篇具有很好参考价值的文章主要介绍了【论文合集】CVPR2023年 部分论文。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考:

CVPR 2023 最全整理:论文分方向汇总 / 代码 / 解读 / 直播 / 项目(更新中)【计算机视觉】-极市开发者社区 (cvmart.net)

amusi/CVPR2023-Papers-with-Code: CVPR 2023 论文和开源项目合集 (github.com)

 

GAN/生成式/对抗式(GAN/Generative/Adversarial)

[7]Fine-Grained Face Swapping via Regional GAN Inversion
paper

[6]Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences between Pretrained Generative Models
paper

[5]Graph Transformer GANs for Graph-Constrained House Generation
paper

[4]Improving GAN Training via Feature Space Shrinkage
paper | code

[3]Adversarial Attack with Raindrops
paper

[2]T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations
paper | project

[1]Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars
paper | project

模型训练/泛化(Model Training/Generalization)

[25]Improved Test-Time Adaptation for Domain Generalization
paper

[24]Re-thinking Model Inversion Attacks Against Deep Neural Networks
paper

[23]Regularize implicit neural representation by itself
paper

[22]Improving the Transferability of Adversarial Samples by Path-Augmented Method
paper

[21]Detecting Backdoors During the Inference Stage Based on Corruption Robustness Consistency
paper | code

[20]Progressive Random Convolutions for Single Domain Generalization
paper

[19]Tunable Convolutions with Parametric Multi-Loss Optimization
paper

[18]Active Finetuning: Exploiting Annotation Budget in the Pretraining-Finetuning Paradigm
paper | code

[17]CFA: Class-wise Calibrated Fair Adversarial Training
paper | code

[16]Generalist: Decoupling Natural and Robust Generalization
paper

[15]Feature Separation and Recalibration for Adversarial Robustness
paper

[14]Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
paper

[13]FlexiViT: One Model for All Patch Sizes
paper | code

[12]Robust Generalization against Photon-Limited Corruptions via Worst-Case Sharpness Minimization
paper | code

[11]Improving Generalization with Domain Convex Game
paper

[10]TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization
paper | code

[9]An Extended Study of Human-like Behavior under Adversarial Training
paper

[8]Sharpness-Aware Gradient Matching for Domain Generalization
paper | code

[7]HumanBench: Towards General Human-centric Perception with Projector Assisted Pretraining
paper

[6]Universal Instance Perception as Object Discovery and Retrieval
paper | code

[5]Practical Network Acceleration with Tiny Sets
paper | code

[4]Towards Bridging the Performance Gaps of Joint Energy-based Models
paper | code

[3]DropKey
paper

[2]Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization
paper

[1]DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
paper

迁移学习/domain/自适应(Transfer Learning/Domain Adaptation)

[17]DATE: Domain Adaptive Product Seeker for E-commerce
paper

[16]Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer
paper

[15]GeoNet: Benchmarking Unsupervised Adaptation across Geographies
paper

[14]C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
paper

[13]AutoLabel: CLIP-based framework for Open-set Video Domain Adaptation
paper | code

[12]BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning
paper | code

[11]Deep Frequency Filtering for Domain Generalization
paper

[10]Semi-Supervised Domain Adaptation with Source Label Adaptation
paper | code

[9]Unsupervised Continual Semantic Adaptation through Neural Rendering
paper

[8]MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
paper | code

[7]Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective
paper

[6]Manipulating Transfer Learning for Property Inference
paper | code

[5]Trainable Projected Gradient Method for Robust Fine-tuning
paper

[4]DA-DETR: Domain Adaptive Detection Transformer with Information Fusion
paper

[3]Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection
paper | code

[2]Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
paper | code

[1]Adaptive Assignment for Geometry Aware Local Feature Matching
paper

对比学习(Contrastive Learning)

[11]FEND: A Future Enhanced Distribution-Aware Contrastive Learning Framework for Long-tail Trajectory Prediction
paper

[10]Dynamic Conceptional Contrastive Learning for Generalized Category Discovery
paper | code

[9]Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens
paper

[8]PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for Generalized Novel Category Discovery
paper | code

[7]Best of Both Worlds: Multimodal Contrastive Learning with Tabular and Imaging Data
paper

[6]Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss
paper

[5]Positive-Augmented Constrastive Learning for Image and Video Captioning Evaluation
paper | code

[4]MaskCon: Masked Contrastive Learning for Coarse-Labelled Dataset
paper | code

[3]CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning
paper | code

[2]Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report Generation
paper | code

[1]Twin Contrastive Learning with Noisy Labels
paper | code

半监督学习/弱监督学习/无监督学习/自监督学习(Self-supervised Learning/Semi-supervised Learning)

[29]Weakly supervised segmentation with point annotations for histopathology images via contrast-based variational model
paper

[28]Token Boosting for Robust Self-Supervised Visual Transformer Pre-training
paper

[27]SOOD: Towards Semi-Supervised Oriented Object Detection
paper | code

[26]Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning
paper | code

[25]Beyond Appearance: a Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks
paper | code

[24]Siamese DETR
paper

[23]HaLP: Hallucinating Latent Positives for Skeleton-based Self-Supervised Learning of Actions
paper

[22]Detecting Backdoors in Pre-trained Encoders
paper | code

[21]Can't Steal? Cont-Steal! Contrastive Stealing Attacks Against Image Encoders
paper

[20]Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation
paper | code

[19]ProtoCon: Pseudo-label Refinement via Online Clustering and Prototypical Consistency for Efficient Semi-supervised Learning
paper

[18]Exploring Structured Semantic Prior for Multi Label Recognition with Incomplete Labels
paper

[17]Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching
paper | code

[16]Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data
paper

[15]Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning
paper

[14]Correlational Image Modeling for Self-Supervised Visual Pre-Training
paper

[13]Extracting Class Activation Maps from Non-Discriminative Features as well
paper | code

[12]TeSLA: Test-Time Self-Learning With Automatic Adversarial Augmentation
paper | code

[11]LOCATE: Localize and Transfer Object Parts for Weakly Supervised Affordance Grounding
paper

[10]MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-Supervised Object Detection
paper | code

[9]Semi-supervised Hand Appearance Recovery via Structure Disentanglement and Dual Adversarial Discrimination
paper

[8]Non-Contrastive Unsupervised Learning of Physiological Signals from Video
paper

[7]Learning Common Rationale to Improve Self-Supervised Representation for Fine-Grained Visual Recognition Problems
paper | code

[6]Intrinsic Physical Concepts Discovery with Object-Centric Predictive Models
paper

[5]The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training
paper | code

[4]Three Guidelines You Should Know for Universally Slimmable Self-Supervised Learning
paper | code

[3]Mask3D: Pre-training 2D Vision Transformers by Learning Masked 3D Priors
paper

[2]Siamese Image Modeling for Self-Supervised Vision Representation Learning
paper | code

[1]Cut and Learn for Unsupervised Object Detection and Instance Segmentation
paper | project文章来源地址https://www.toymoban.com/news/detail-652137.html

到了这里,关于【论文合集】CVPR2023年 部分论文的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记|CVPR2023:Semantic Prompt for Few-Shot Image Recognition

    论文地址:https://arxiv.org/pdf/2303.14123.pdf 这是一篇2023年发表在CVPR上的论文,论文题目是Semantic Prompt for Few-Shot Image Recognitio,即用于小样本图像识别的语义提示。 第一,最近几项研究利用 语义信息 来进行小样本学习的研究。 一方面因为通过少量样本去识别新类别很难,就想使

    2024年02月04日
    浏览(56)
  • 论文笔记 | 【CVPR-2023】Activating More Pixels in Image Super-Resolution Transformer

    抛砖引玉了,如有不同意见欢迎讨论。 在超分Transformer中激活更多像素。 澳门大学、中科大、上海人工智能实验室的,董超老师的团队。 CVPR2023。 LAM:一种为SR任务设计的归因方法,能显示模型在进行超分辨率重建的过程中哪些像素起到了作用。一般来说,被利用像素的范围

    2024年02月11日
    浏览(46)
  • 论文笔记|CVPR2023:Supervised Masked Knowledge Distillation for Few-Shot Transformers

    这篇论文的题目是 用于小样本Transformers的监督遮掩知识蒸馏 论文接收: CVPR 2023 论文地址: https://arxiv.org/pdf/2303.15466.pdf 代码链接: https://github.com/HL-hanlin/SMKD 1.ViT在小样本学习(只有少量标记数据的小型数据集)中往往会 过拟合,并且由于缺乏 归纳偏置 而导致性能较差;

    2024年02月06日
    浏览(53)
  • CVPR2023对抗攻击相关论文

    Feature Separation and Recalibration for Adversarial Robustness 论文链接:http://arxiv.org/abs/2303.13846v1 代码地址:GitHub - wkim97/FSR: Feature Separation and Recalibration (CVPR 2023) 摘要:由于特征层面的扰动积累,深度神经网络容易受到对抗性攻击,许多研究通过停用导致模型错误预测的非鲁棒特征激活

    2024年02月09日
    浏览(46)
  • 【CVPR 2023】FasterNet论文详解

    论文名称:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks 论文地址:https://arxiv.org/abs/2303.03667 作者发现由于效率低下的每秒浮点运算,每秒浮点运算的减少并不一定会导致类似水平的延迟减少。提出通过同时减少冗余计算和内存访问有效地提取空间特征。然后基于PConv进

    2023年04月14日
    浏览(48)
  • CVPR 2023 医学图像分割论文大盘点

    点击下方 卡片 ,关注“ CVer ”公众号 AI/CV重磅干货,第一时间送达 点击进入— 【医学图像分割】微信交流群 被催了很久,CVer 正式开启 CVPR 2023 论文大盘点系列 ! Amusi 一共搜集了13篇医学图像分割论文 ,这应该是目前各平台上 最新最全面的CVPR 2023 医学图像分割盘点资料

    2024年02月14日
    浏览(45)
  • CVPR 2023 | 美团技术团队精选论文解读

    本文精选了美团技术团队被CVPR 2023收录的8篇论文进行解读。这些论文既有自监督学习、领域自适应、联邦学习等通用学习范式方面的技术迭代,也涉及目标检测、跟踪、分割、Low-level Vision等典型视觉任务的性能,体现了美团在基础通用技术和垂直领域技术上的全方位创新。

    2024年02月09日
    浏览(47)
  • CVPR2023 | 70+目标检测论文及代码整理

    目标检测是当下应用最广的计算机视觉任务之一。本文整理了CVPR 2023 目标检测相关论文72篇,覆盖包括2D目标检测、3D目标检测、视频目标检测、人物交互检测、异常检测、伪装目标检测、关键点检测、显著性目标检测、车道线检测、边缘检测等10个细分任务。并且每篇论文都

    2024年02月10日
    浏览(36)
  • 【论文阅读】CVPR2023 IGEV-Stereo

    【cvhub导读】【paper】【code_openi】 代码是启智社区的镜像仓库,不需要魔法,点击这里注册 1️⃣现有主流方法 基于代价滤波的方法 和 基于迭代优化的方法 : 基于 代价滤波 的方法可以在cost volume中编码足够的 非局部几何和上下文信息 ,这对于具有挑战性的区域中的视差预

    2024年02月07日
    浏览(44)
  • CVPR 2023 | 风格迁移论文3篇简读,视觉AIGC系列

    内容相似度损失(包括特征和像素相似度)是逼真和视频风格迁移中出现伪影的主要问题。本文提出了一个名为CAP-VSTNet的新框架,包括一个新的可逆残差网络(reversible residual network)和一个无偏线性变换模块,用于多功能风格转移。这个可逆残差网络不仅可以保留内容关联性

    2024年02月11日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包