[oneAPI] 手写数字识别-BiLSTM

这篇具有很好参考价值的文章主要介绍了[oneAPI] 手写数字识别-BiLSTM。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517
Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/

手写数字识别

使用了pytorch以及Intel® Optimization for PyTorch,通过优化扩展了 PyTorch,使英特尔硬件的性能进一步提升,让手写数字识别问题更加的快速高效
[oneAPI] 手写数字识别-BiLSTM,python杂记,oneapi

使用MNIST数据集,该数据集包含了一系列以黑白图像表示的手写数字,每个图像的大小为28x28像素,数据集组成如下:

  • 训练集:包含60,000个图像和标签,用于训练模型。
  • 测试集:包含10,000个图像和标签,用于测试模型的性能。

每个图像都被标记为0到9之间的一个数字,表示图像中显示的手写数字。这个数据集常常被用来验证图像分类模型的性能,特别是在计算机视觉领域。

参数与包

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

加载数据

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False,
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

模型

# Bidirectional recurrent neural network (many-to-one)
class BiRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, num_classes)  # 2 for bidirection

    def forward(self, x):
        # Set initial states
        h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)  # 2 for bidirection
        c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)

        # Forward propagate LSTM
        out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size*2)

        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out

训练过程

model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

# Test the model
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

结果

[oneAPI] 手写数字识别-BiLSTM,python杂记,oneapi文章来源地址https://www.toymoban.com/news/detail-652149.html

oneAPI

import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

# 模型
model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)

到了这里,关于[oneAPI] 手写数字识别-BiLSTM的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [oneAPI] Neural Style Transfer

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ Neural Style Transfer是一种使用 CNN 将一幅图像的内容与另一幅图像的风格相结合的算法。给定内容图像和风格图像,目标是生成最小化与内容图像

    2024年02月12日
    浏览(40)
  • 手写数字识别及python实现

    目录 1、总体流程 2、代码实现 下载数据集 确定激活函数、损失函数、计算梯度函数等 神经网络的搭建 模型的训练与验证  测试模型的泛化能力 step1:下载数据集、读取数据 step2:搭建神经网络(确定输出层、隐藏层(层数)、输出层的结构) step3:初始化偏置和权重 ste

    2024年02月07日
    浏览(42)
  • [oneAPI] 使用字符级 RNN 生成名称

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 为了深入探索语言模型在分类和生成方面的卓越能力,我们特意设计了一个独特的任务。此任务的独特之处在于,它旨在综合学习多种语言的词

    2024年02月11日
    浏览(37)
  • [oneAPI] 使用Bert进行中文文本分类

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 在本次实验中,我们利用PyTorch和Intel® Optimization for PyTorch的强大功能,对PyTorch进行了精心的优化和扩展。这些优化举措极大地增强了PyTorch在各

    2024年02月12日
    浏览(44)
  • 基于因特尔OneAPI实现矩阵并行乘法运算

    OneAPI介绍 Intel oneAPI 是一个跨行业、开放、基于标准的统一的编程模型,旨在提供一个适用于各类计算架构的统一编程模型和应用程序接口。其核心思想是使开发者只需编写一次代码,便可在跨平台的异构系统上运行,支持的底层硬件架构包括 CPU、GPU、FPGA、神经网络处理器以

    2024年02月04日
    浏览(39)
  • dpc++(oneAPI)调用nvidiaGPU配置与验证

    1.安装Intel® oneAPI Toolkits https://software.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top.html 下载安装Base版,注意版本,尽量安装新版本 2.安装GPU驱动与CUDA https://developer.nvidia.com/cuda-downloads 建议为11.8及以上版本 nvidia-smi能出现cuda版本 Ubuntu Red Hat

    2024年02月15日
    浏览(38)
  • Intel oneAPI——让高性能计算触手可及

    在人工智能兴起的今天,大规模、高性能计算已成为社会发展的刚需。动辄千万节点规模的社交网络、交通网络,语言聊天模型中的大规模神经网络,以及航空航天等涉及大规模计算的场景,都少不了并行计算的支持。并行计算是一种一次可执行多个指令的算法,目的是提高

    2024年02月01日
    浏览(64)
  • Python代码识别minist手写数字【附pdf】

    一、概述 对于人类而言,要识别图片中的数字是一件很容易的事情,但是,如何让机器学会理解图片上的数字,这似乎并不容易。那么,能否找出一个函数(模型),通过输入相关的信息,最终得到期望的结果呢? 二、python代码实现中涉及的输入输出内容: 输入:mnist数据

    2024年04月14日
    浏览(40)
  • oneAPI人工智能分析工具包实现图像处理

    oneAPI是一个由英特尔(Intel)主导的、面向异构计算的开放标准和平台。它旨在简化和加速跨多种硬件架构的应用程序开发,包括CPU、GPU、FPGA和其他加速器。 以下是关于oneAPI发展的一些要点: 1.创立背景和目标: oneAPI的发展始于英特尔意识到在异构计算时代,开发者面临的

    2024年02月11日
    浏览(62)
  • [oneAPI] 基于BERT预训练模型的英文文本蕴含任务

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 我们在Intel® DevCloud for oneAPI平台上构建了我们的实验环境,充分利用了其完全虚拟化的特性,使我们能够专注于模型的开发和优化,无需烦心底

    2024年02月11日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包