【不带权重的TOPSIS模型详解】——数学建模

这篇具有很好参考价值的文章主要介绍了【不带权重的TOPSIS模型详解】——数学建模。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

部分资料取自于b站:数学建模学习交流清风老师

定义:

  • TOPSIS法可翻译为逼近理想解排序法,国内常简称为优劣解距离法
  • 它是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间地差异。

举个例子: 数学成绩越高代表学习能力越强。跑100米花费的时间越少代表体育天赋越好。那怎么样结合这两项不同单位的指标进行综合考量通过打分,得出一名学生最后的得分呢?这就需要使用TOPSIS法,它一般用于已知数据。

问题引入:

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

我们需要对一个学生进行评分,成绩越高打的分数自然越高。但是排名数字是从低到高开始的。所以我们需要修正,让修正后的排名数字大小能反映各个学生的评分。如第一名得4分,最后一名得1分。然后进行归一化处理,处理后的评分相加应为1

不合理之处:

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

如图所示:按照这种方法进行评价的话。成绩大小可以随意修改,只要不影响排名。这样的话,就会有失合理性。

进行修改:

我们想让成绩的具体分数影响最后的得分,这就必须要引入最高成绩和最低成绩了。通过这两个极值来构造计算评分的公式

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

改造后的评分未经过归一化处理时:最高分为1,最低分为0。不用担心0这个数字或者1这个数字过于特殊。实际上,指标通常都在两个以上,综合下来不会出现0和1这种极端情况

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

指标分类:

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

这两个指标一个是越大越好,一个是越少越好。这样的指标就存在分类

常见指标:

  1. 极大型指标(效益型指标):数值越大(多)越好。例子:利润
  2. 极小型指标(成本型指标):数值越小(少)越好。例子:费用
  3. 中间型指标:越接近某个值越好。例子:PH值
  4. 区间型指标:落在某个区间内最好。例子:体温

指标正向化:

极小型指标正向化公式:

根据上图指出的两个指标来看,成绩越高越好。争吵次数确实越少越好。一个高,一个低不利于进行综合评判。所以我们就需要将所有的指标正向化处理全部化为==极大型指标。==包括中间型指标和区间型指标。

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

当然了,若是所有元素均为正数,那么也可以使用1/x。但还是推荐第一种max-x

中间型指标正向化公式:

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

区间型指标正向化公式:

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

标准化处理(消去单位):

为了消去不同指标量纲的影响(比如上一题一个单位是分,一个单位是次数),我们需要对已经正向化的矩阵进行标准化处理

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

  1. 当前列每一个元素取平方(取平方是因为避免元素产生负数的影响)
  2. 对取平方后的列元素求和,再开根号
  3. 用当前元素除以2值就是标准化后的结果
  4. 标准化后的数值不改变相对大小

代码解析:

%正向化矩阵
X = [89 1;60 3;74 2;99 0];
%对矩阵的行和列进行拆包,n为行,m为列
[n,m] = size(X);
%标准化处理,repmat函数可以将矩阵视为一个整体。按几行几列复制。
res = X./repmat(sum(X.^2).^0.5,n,1)

计算得分:

标准化后的数据还需要计算各指标的总得分,这里不区分权重,所以各项系数均为1

【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模
【不带权重的TOPSIS模型详解】——数学建模,数学建模,数学建模

过程解析:

求出z与最大值的距离,最小值同理

  1. 求出每个指标下最大的元素,并将它构成行向量
  2. 用z的每个指标数据减去1所得的行向量,取平方,再求和。
  3. 开根号

代码解析:

clear
clc
%运行标准化结果的文件
run("biao_zhun_hua.m");
[n,m] = size(res);
%求最大距离
max_res = sum((repmat(max(res),n,1)-res).^2,2).^0.5;
%求最小距离
min_res = sum((repmat(min(res),n,1)-res).^2,2).^0.5;
%未归一化后的得分
final_res = min_res./(max_res + min_res);
%归一化后的得分
answer = final_res./repmat(sum(final_res),n,1)

特别注意,这里sum的求和要行求和,因为是各个指标的相加。最后得到的结果是一个列向量,每一列对应一个人的综合得分最大值或者最小值。文章来源地址https://www.toymoban.com/news/detail-652185.html

到了这里,关于【不带权重的TOPSIS模型详解】——数学建模的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模——TOPSIS法

    可翻译为逼近理想解排序法,国内常简称为优劣解距离法 TOPSIS法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确的反应各评价方案之间的差距。 (上期我们刚讲述了层次分析法,但是对于层次分析法也有一定的限制) 层次分析法的局限性: 那TO

    2024年02月16日
    浏览(35)
  • 数学建模--TOPSIS

    topsis.m Positivization.m inter2Max.m Mid2Max.m Min2Max.m

    2024年02月13日
    浏览(31)
  • 数学建模-TOPSIS法

    来自清风老师数学建模的教程 TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法。 TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。 层次分析法

    2024年02月15日
    浏览(43)
  • 《零基础数学建模》——TOPSIS+熵权法

    本文大部分是对于数学建模清风老师的课程学习总结归纳而来,我的理解可能有错误,大家发现错误可以在评论区批评指正,课程地址:《数学建模清风》   TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法

    2023年04月09日
    浏览(37)
  • 数学建模.优劣解距离法Topsis

    1.引言 Topsis也是一种分析类的方法,得到最优结果。 层次分析法:有我了还要你干嘛? 哈哈,这里简单说一下,Topsis与层次分析法的区别: 在处理多个决策层的时候,层次分析法会不准确,显得力不从心,那么这个时候用Topsis会更好一些,简单可以理解为Topsis是层次分析法

    2024年02月05日
    浏览(40)
  • 数学建模学习笔记||TOPSIS&&熵权法

    目录 评价类问题介绍 TOPSIS法 算法步骤 1.统一指标类型(指标正向化) 2.标准化处理 3.确定正理想解和负理想解 4.计算距离 5.计算相对接近度(S越大越接近理想解) 熵权法 概念 过程 python代码实现 作用         声明 评价类问题介绍 目的:得知一组方案的好坏,对数据评

    2024年01月16日
    浏览(40)
  • 优劣解距离法(TOPSIS)——数学建模清风笔记

    构造计算评分的公式:    max,min指已知数据中的最大值和最小值而不是理论上的最大值和最小值 三点解释: (1)比较的对象一般要远大于两个。(例如比较一个班级的成绩) (2)比较的指标也往往不只是一个方面的,例如成绩、工时数、课外竞赛得分等。 (3)有很多指

    2024年01月17日
    浏览(42)
  • 数学建模--Topsis评价方法的Python实现

    目录 1.算法流程简介 2.算法核心代码 3.算法效果展示  

    2024年02月09日
    浏览(42)
  • 2023数学建模国赛常用算法-Topsis优劣解距离法

    1.1 概念 TOPSIS 法是一种常用的组内综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。基本过程为基于归一化后的原始数据矩阵,采用余弦法找出有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距

    2024年02月15日
    浏览(33)
  • 【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现

    客观评价方法中的一种,亦称为理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最优解和最劣解,通过计算每个方案到理想方案的相对贴近度,即靠近止理想解和远离负理想解的程度,来对方案进行排序,从而选出最优

    2024年02月08日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包