【C语言】深入理解C语言链表

这篇具有很好参考价值的文章主要介绍了【C语言】深入理解C语言链表。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

链表是一种常见的数据结构,广泛应用于计算机科学中。C语言提供了丰富的指针操作,使得链表的实现相对简便。本博客将介绍链表的基本概念,以及使用C语言实现链表的代码示例。

目录

一、链表的基本概念

二、链表的分类

三、通俗例子:学生管理系统


一、链表的基本概念

链表是由节点(Node)组成的数据结构,每个节点包含两个部分:数据域和指针域。数据域用于存储数据,指针域用于指向下一个节点。链表的起点为头节点(Head),尾节点的指针域为NULL。

 链表的特点包括:动态性(可以灵活地添加或删除节点)、内存利用率高、插入和删除操作效率高。然而,链表的查询效率较低,需要遍历整个链表才能找到目标节点。

二、链表的分类

【C语言】深入理解C语言链表,C语言,c语言,链表,开发语言

 1. 单链表(Singly Linked List):单链表是最基本的链表类型,每个节点包含一个数据域和一个指向下一个节点的指针。它只能从头节点开始顺序访问,无法回溯到前一个节点。

示例代码:

#include <stdio.h>
#include <stdlib.h>

typedef struct Node {
    int data;
    struct Node* next;
} Node;

void printList(Node* head) {
    Node* current = head;
    
    while (current != NULL) {
        printf("%d ", current->data);
        current = current->next;
    }
}

// 在链表尾部插入新节点
void insert(Node** head, int data) {
    Node* newNode = (Node*)malloc(sizeof(Node));
    newNode->data = data;
    newNode->next = NULL;
    
    if (*head == NULL) {
        *head = newNode;
    } else {
        Node* current = *head;
        
        while (current->next != NULL) {
            current = current->next;
        }
        
        current->next = newNode;
    }
}

int main() {
    Node* head = NULL;

    insert(&head, 1);
    insert(&head, 2);
    insert(&head, 3);
    
    printList(head);
    
    return 0;
}

2. 双向链表(Doubly Linked List):双向链表中的每个节点都有两个指针,一个指向前一个节点,一个指向后一个节点。相比于单链表,双向链表可以进行双向遍历和删除操作,但在插入和删除节点时需要维护更多的指针关系。

示例代码:

#include <stdio.h>
#include <stdlib.h>

typedef struct Node {
    int data;
    struct Node* prev;
    struct Node* next;
} Node;

void printList(Node* head) {
    Node* current = head;
    
    while (current != NULL) {
        printf("%d ", current->data);
        current = current->next;
    }
}

void insert(Node** head, int data) {
    Node* newNode = (Node*)malloc(sizeof(Node));
    newNode->data = data;
    newNode->prev = NULL;
    newNode->next = NULL;
    
    if (*head == NULL) {
        *head = newNode;
    } else {
        Node* current = *head;
        
        while (current->next != NULL) {
            current = current->next;
        }
        
        newNode->prev = current;
        current->next = newNode;
    }
}

int main() {
    Node* head = NULL;

    insert(&head, 1);
    insert(&head, 2);
    insert(&head, 3);
    
    printList(head);
    
    return 0;
}

3. 循环链表(Circular Linked List):循环链表是一种特殊的链表,最后一个节点的指针指向第一个节点,形成一个闭环。循环链表可以无限循环地遍历,常用于构建循环队列等数据结构。

示例代码:

#include <stdio.h>
#include <stdlib.h>

typedef struct Node {
    int data;
    struct Node* next;
} Node;

void printList(Node* head) {
    Node* current = head;
    
    if (head == NULL) {
        return;
    }
    
    do {
        printf("%d ", current->data);
        current = current->next;
    } while (current != head);
}

void insert(Node** head, int data) {
    Node* newNode = (Node*)malloc(sizeof(Node));
    newNode->data = data;
    newNode->next = NULL;
    
    if (*head == NULL) {
        *head = newNode;
        newNode->next = newNode;
    } else {
        Node* last = *head;
        
        while (last->next != *head) {
            last = last->next;
        }
        
        newNode->next = *head;
        last->next = newNode;
    }
}

int main() {
    Node* head = NULL;

    insert(&head, 1);
    insert(&head, 2);
    insert(&head, 3);
    
    printList(head);
    
    return 0;
}

4. 静态链表(Static Linked List):静态链表是使用数组实现的链表,而不是使用指针。通过数组的下标关系来模拟节点之间的链接关系。静态链表的缺点是大小固定,插入和删除节点不方便,但由于不需要指针的额外存储空间,具有一定的存储效率。

5. 带头结点链表(Head Linked List):带头结点的链表在链表开始部分添加了一个额外的头节点,用于简化链表的操作。头节点不存储具体的数据,仅用于指向第一个真正的节点,有助于统一处理链表的边界情况。

6. 带环链表(Cyclic Linked List):带环链表是一种特殊的链表,其中某个节点的指针指向链表中的一个前面的节点,形成环状结构。带环链表常用于解决一些与环有关的算法问题,如判断链表中是否存在环、找到环的起点等。

三、通俗例子:学生管理系统

假设我们要存储一组人的信息,每个人有姓名和年龄两个属性。如果使用数组来存储这些人的信息,可能会遇到一个问题:数组的大小是固定的,无法动态地添加或删除人员。这时候链表就派上用场了。

我们可以将链表看作是一个班级的人员名册。每个节点表示一个人,其中数据域存储着该人的姓名和年龄,指针域则指向下一个人。

现在,我们以一个简单的链表为例来说明。

假设我们有以下链表:

-> [Alice, 25] -> [Bob, 30] -> [Charlie, 35] -> [Diana, 40] -> NULL

其中箭头表示指针,指向下一个节点。

在这个链表中,每个节点都包含两个部分:数据域指针域。数据域存储人员的姓名和年龄,指针域则指向下一个人员节点。

我们可以从头节点(最前面的节点)开始,依次遍历整个链表,获取每个人员的信息。

通过链表,我们可以轻松地添加新的人员信息。比如,假设我们要插入一个叫"Eva"、年龄为28岁的人,只需在链表尾部添加一个新节点:

-> [Alice, 25] -> [Bob, 30] -> [Charlie, 35] -> [Diana, 40] -> [Eva, 28] -> NULL

或者,我们也可以在链表中间插入一个新节点,比如将"Bob"后面插入一个叫"Frank"、年龄为32岁的人:

-> [Alice, 25] -> [Bob, 30] -> [Frank, 32] -> [Charlie, 35] -> [Diana, 40] -> NULL

此外,我们还可以轻松地删除链表中的人员信息。比如,我们要删除年龄为35岁的"Charlie",只需要将指向"Charlie"的指针跳过,让它指向"Charlie"后面的节点:

-> [Alice, 25] -> [Bob, 30] -> [Frank, 32] -> [Diana, 40] -> NULL

通过这个通俗的例子,我们可以更好地理解链表的概念。链表具有动态存储、灵活插入和删除的特性,可以解决一些固定大小的数据结构无法满足的需求。对于需要经常进行插入和删除操作的场景,链表是一个非常有用的数据结构。文章来源地址https://www.toymoban.com/news/detail-652848.html

到了这里,关于【C语言】深入理解C语言链表的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解指针(c语言)

    可以使用指针来访问数组元素。例如,可以声明一个指针变量并将其指向数组的第一个元素,然后通过递增指针的方式来访问数组的其他元素: 输出结果: 在C语言中, 数组名有时代表数组中首元素的地址,有时代表整个数组 ,视情况而定。 1、数组首元素的地址 例1: 定义

    2024年02月22日
    浏览(37)
  • 深入理解指针——C语言

    在讲内存和地址之前,我们想有个生活中的案例: 假设有⼀栋宿舍楼,把你放在楼里,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,如果想找到你,就得挨个房子去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

    2024年03月14日
    浏览(68)
  • C语言——深入理解指针(3)

    目录 1. 字符指针 2. 数组指针 2.1 数组指针变量 2.2 数组指针变量的初始化 3.二维数组传参(本质) 4. 函数指针 4.1 函数指针变量的创建 4.2 函数指针的使用 4.3 typedef  5. 函数指针数组 6. 转移表(函数指针数组的使用) 在指针的类型中有一种指针类型为字符指针  char*    举例

    2024年02月05日
    浏览(54)
  • 【C语言:深入理解指针二】

    我们知道,指针变量也是变量,它也有自己的地址,使用什么来存放它的地址呢?答案是:二级指针。 关于二级指针的运算 *pp先解引用,对pp中的地址进行访问,访问的就是p **pp, 先通过*pp找到p,再对p进行解引用,访问的就是a 指针数组,顾名思义,它应该是一个数组,是用

    2024年02月04日
    浏览(106)
  • 【C语言深入】深入理解程序的预处理过程

    我们平时所写的每一个.c文件都会经过编译和连接的过程之后才会形成一个可执行程序: 今天我们就来详细的看看编译和连接这两个过程的具体细节。 程序的翻译环境与执行环境 在ANSI C的任何一种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被转换

    2023年04月08日
    浏览(41)
  • 深入理解C语言中的枚举

    目录 1. 枚举的定义 2. 枚举常量的赋值 3. 枚举的使用示例 4. 注意事项 在C语言中,枚举(Enum)是一种用户定义的数据类型,用于定义一组具名的整型常量。枚举常常用于提高代码的可读性和可维护性,使程序更易于理解。本篇博客将详细介绍C语言中枚举的相关知识,并提供

    2024年03月24日
    浏览(36)
  • C语言深入理解指针(非常详细)(二)

    指针的基本运算有三种,分别是: • 指针±整数 • 指针-指针 • 指针的关系运算 因为数组在内存中是连续存放的,比如int类型的数组,每个元素相差4个字节,因此我们只需要知道首元素的地址就可以通过加减的方式找到后面元素的地址 。 概念:野指针就是指针指向的位置

    2024年02月10日
    浏览(41)
  • C语言深入理解指针(非常详细)(一)

    在将内存和地址时我们先举一个生活中的例子: 假设有⼀栋宿舍楼,把你放在楼里,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩, 如果想找到你,就得挨个房子去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如: 有

    2024年02月10日
    浏览(37)
  • C语言深入理解指针(非常详细)(四)

    字符指针在之前我们有提到过,(字符)(指针)前面的字符代表着存储的元素为字符类型,而指针则是表示这存储的方式。 写法为char * 一般使用的方式如下: 还有一种使用方式如下: 值得注意的是: 代码 const char pstr = “hello jack.”; 特别容易以为是把字符串 hello jack 放到

    2024年02月09日
    浏览(53)
  • 【C语言基础】:深入理解指针(三)

    指针系列回顾 : 【C语言基础】:深入理解指针(一) 【C语言基础】:深入理解指针(二) 一、冒泡排序 冒泡排序的核心思想就是:两两相邻的元素进行比较。 可以看到,这段代码对arr数组进行了排序,但这个代码还有一些缺陷,那就是无论数组内部的元素是否有序,他都会循

    2024年03月10日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包