二 根据用户行为数据创建ALS模型并召回商品

这篇具有很好参考价值的文章主要介绍了二 根据用户行为数据创建ALS模型并召回商品。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

二 根据用户行为数据创建ALS模型并召回商品

2.0 用户行为数据拆分

  • 方便练习可以对数据做拆分处理

    • pandas的数据分批读取 chunk 厚厚的一块 相当大的数量或部分
    import pandas as pd
    reader = pd.read_csv('behavior_log.csv',chunksize=100,iterator=True)
    count = 0;
    for chunk in reader:
        count += 1
        if count ==1:
            chunk.to_csv('test4.csv',index = False)
        elif count>1 and count<1000:
            chunk.to_csv('test4.csv',index = False, mode = 'a',header = False)
        else:
            break
    pd.read_csv('test4.csv')
    

2.1 预处理behavior_log数据集

  • 创建spark session
import os
# 配置spark driver和pyspark运行时,所使用的python解释器路径
PYSPARK_PYTHON = "/home/hadoop/miniconda3/envs/datapy365spark23/bin/python"
JAVA_HOME='/home/hadoop/app/jdk1.8.0_191'
# 当存在多个版本时,不指定很可能会导致出错
os.environ["PYSPARK_PYTHON"] = PYSPARK_PYTHON
os.environ["PYSPARK_DRIVER_PYTHON"] = PYSPARK_PYTHON
os.environ['JAVA_HOME']=JAVA_HOME
# spark配置信息
from pyspark import SparkConf
from pyspark.sql import SparkSession

SPARK_APP_NAME = "preprocessingBehaviorLog"
SPARK_URL = "spark://192.168.199.188:7077"

conf = SparkConf()    # 创建spark config对象
config = (
	("spark.app.name", SPARK_APP_NAME),    # 设置启动的spark的app名称,没有提供,将随机产生一个名称
	("spark.executor.memory", "6g"),    # 设置该app启动时占用的内存用量,默认1g
	("spark.master", SPARK_URL),    # spark master的地址
    ("spark.executor.cores", "4"),    # 设置spark executor使用的CPU核心数
    # 以下三项配置,可以控制执行器数量
#     ("spark.dynamicAllocation.enabled", True),
#     ("spark.dynamicAllocation.initialExecutors", 1),    # 1个执行器
#     ("spark.shuffle.service.enabled", True)
# 	('spark.sql.pivotMaxValues', '99999'),  # 当需要pivot DF,且值很多时,需要修改,默认是10000
)
# 查看更详细配置及说明:https://spark.apache.org/docs/latest/configuration.html

conf.setAll(config)

# 利用config对象,创建spark session
spark = SparkSession.builder.config(conf=conf).getOrCreate()
  • 从hdfs中加载csv文件为DataFrame
# 从hdfs加载CSV文件为DataFrame
df = spark.read.csv("hdfs://localhost:9000/datasets/behavior_log.csv", header=True)
df.show()    # 查看dataframe,默认显示前20条
# 大致查看一下数据类型
df.printSchema()    # 打印当前dataframe的结构

显示结果:

+------+----------+----+-----+------+
|  user|time_stamp|btag| cate| brand|
+------+----------+----+-----+------+
|558157|1493741625|  pv| 6250| 91286|
|558157|1493741626|  pv| 6250| 91286|
|558157|1493741627|  pv| 6250| 91286|
|728690|1493776998|  pv|11800| 62353|
|332634|1493809895|  pv| 1101|365477|
|857237|1493816945|  pv| 1043|110616|
|619381|1493774638|  pv|  385|428950|
|467042|1493772641|  pv| 8237|301299|
|467042|1493772644|  pv| 8237|301299|
|991528|1493780710|  pv| 7270|274795|
|991528|1493780712|  pv| 7270|274795|
|991528|1493780712|  pv| 7270|274795|
|991528|1493780712|  pv| 7270|274795|
|991528|1493780714|  pv| 7270|274795|
|991528|1493780765|  pv| 7270|274795|
|991528|1493780714|  pv| 7270|274795|
|991528|1493780765|  pv| 7270|274795|
|991528|1493780764|  pv| 7270|274795|
|991528|1493780633|  pv| 7270|274795|
|991528|1493780764|  pv| 7270|274795|
+------+----------+----+-----+------+
only showing top 20 rows

root
 |-- user: string (nullable = true)
 |-- time_stamp: string (nullable = true)
 |-- btag: string (nullable = true)
 |-- cate: string (nullable = true)
 |-- brand: string (nullable = true)
  • 从hdfs加载数据为dataframe,并设置结构
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, LongType
# 构建结构对象
schema = StructType([
    StructField("userId", IntegerType()),
    StructField("timestamp", LongType()),
    StructField("btag", StringType()),
    StructField("cateId", IntegerType()),
    StructField("brandId", IntegerType())
])
# 从hdfs加载数据为dataframe,并设置结构
behavior_log_df = spark.read.csv("hdfs://localhost:8020/datasets/behavior_log.csv", header=True, schema=schema)
behavior_log_df.show()
behavior_log_df.count() 

显示结果:

+------+----------+----+------+-------+
|userId| timestamp|btag|cateId|brandId|
+------+----------+----+------+-------+
|558157|1493741625|  pv|  6250|  91286|
|558157|1493741626|  pv|  6250|  91286|
|558157|1493741627|  pv|  6250|  91286|
|728690|1493776998|  pv| 11800|  62353|
|332634|1493809895|  pv|  1101| 365477|
|857237|1493816945|  pv|  1043| 110616|
|619381|1493774638|  pv|   385| 428950|
|467042|1493772641|  pv|  8237| 301299|
|467042|1493772644|  pv|  8237| 301299|
|991528|1493780710|  pv|  7270| 274795|
|991528|1493780712|  pv|  7270| 274795|
|991528|1493780712|  pv|  7270| 274795|
|991528|1493780712|  pv|  7270| 274795|
|991528|1493780714|  pv|  7270| 274795|
|991528|1493780765|  pv|  7270| 274795|
|991528|1493780714|  pv|  7270| 274795|
|991528|1493780765|  pv|  7270| 274795|
|991528|1493780764|  pv|  7270| 274795|
|991528|1493780633|  pv|  7270| 274795|
|991528|1493780764|  pv|  7270| 274795|
+------+----------+----+------+-------+
only showing top 20 rows

root
 |-- userId: integer (nullable = true)
 |-- timestamp: long (nullable = true)
 |-- btag: string (nullable = true)
 |-- cateId: integer (nullable = true)
 |-- brandId: integer (nullable = true)
  • 分析数据集字段的类型和格式
    • 查看是否有空值
    • 查看每列数据的类型
    • 查看每列数据的类别情况
print("查看userId的数据情况:", behavior_log_df.groupBy("userId").count().count())
# 约113w用户
#注意:behavior_log_df.groupBy("userId").count()  返回的是一个dataframe,这里的count计算的是每一个分组的个数,但当前还没有进行计算
# 当调用df.count()时才开始进行计算,这里的count计算的是dataframe的条目数,也就是共有多少个分组
查看user的数据情况: 1136340
print("查看btag的数据情况:", behavior_log_df.groupBy("btag").count().collect())    # collect会把计算结果全部加载到内存,谨慎使用
# 只有四种类型数据:pv、fav、cart、buy
# 这里由于类型只有四个,所以直接使用collect,把数据全部加载出来
查看btag的数据情况: [Row(btag='buy', count=9115919), Row(btag='fav', count=9301837), Row(btag='cart', count=15946033), Row(btag='pv', count=688904345)]
print("查看cateId的数据情况:", behavior_log_df.groupBy("cateId").count().count())
# 约12968类别id
查看cateId的数据情况: 12968
print("查看brandId的数据情况:", behavior_log_df.groupBy("brandId").count().count())
# 约460561品牌id
查看brandId的数据情况: 460561
print("判断数据是否有空值:", behavior_log_df.count(), behavior_log_df.dropna().count())
# 约7亿条目723268134 723268134
# 本数据集无空值条目,可放心处理
判断数据是否有空值: 723268134 723268134
  • pivot透视操作,把某列里的字段值转换成行并进行聚合运算(pyspark.sql.GroupedData.pivot)
    • 如果透视的字段中的不同属性值超过10000个,则需要设置spark.sql.pivotMaxValues,否则计算过程中会出现错误。文档介绍。
# 统计每个用户对各类商品的pv、fav、cart、buy数量
cate_count_df = behavior_log_df.groupBy(behavior_log_df.userId, behavior_log_df.cateId).pivot("btag",["pv","fav","cart","buy"]).count()
cate_count_df.printSchema()    # 此时还没有开始计算

显示效果:

root
 |-- userId: integer (nullable = true)
 |-- cateId: integer (nullable = true)
 |-- pv: long (nullable = true)
 |-- fav: long (nullable = true)
 |-- cart: long (nullable = true)
 |-- buy: long (nullable = true)
  • 统计每个用户对各个品牌的pv、fav、cart、buy数量并保存结果
# 统计每个用户对各个品牌的pv、fav、cart、buy数量
brand_count_df = behavior_log_df.groupBy(behavior_log_df.userId, behavior_log_df.brandId).pivot("btag",["pv","fav","cart","buy"]).count()
# brand_count_df.show()    # 同上
# 113w * 46w
# 由于运算时间比较长,所以这里先将结果存储起来,供后续其他操作使用
# 写入数据时才开始计算
cate_count_df.write.csv("hdfs://localhost:9000/preprocessing_dataset/cate_count.csv", header=True)
brand_count_df.write.csv("hdfs://localhost:9000/preprocessing_dataset/brand_count.csv", header=True)

2.2 根据用户对类目偏好打分训练ALS模型

  • 根据您统计的次数 + 打分规则 ==> 偏好打分数据集 ==> ALS模型
# spark ml的模型训练是基于内存的,如果数据过大,内存空间小,迭代次数过多的化,可能会造成内存溢出,报错
# 设置Checkpoint的话,会把所有数据落盘,这样如果异常退出,下次重启后,可以接着上次的训练节点继续运行
# 但该方法其实指标不治本,因为无法防止内存溢出,所以还是会报错
# 如果数据量大,应考虑的是增加内存、或限制迭代次数和训练数据量级等
spark.sparkContext.setCheckpointDir("hdfs://localhost:8020/checkPoint/")
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, LongType, FloatType

# 构建结构对象
schema = StructType([
    StructField("userId", IntegerType()),
    StructField("cateId", IntegerType()),
    StructField("pv", IntegerType()),
    StructField("fav", IntegerType()),
    StructField("cart", IntegerType()),
    StructField("buy", IntegerType())
])

# 从hdfs加载CSV文件
cate_count_df = spark.read.csv("hdfs://localhost:9000/preprocessing_dataset/cate_count.csv", header=True, schema=schema)
cate_count_df.printSchema()
cate_count_df.first()    # 第一行数据

显示结果:

root
 |-- userId: integer (nullable = true)
 |-- cateId: integer (nullable = true)
 |-- pv: integer (nullable = true)
 |-- fav: integer (nullable = true)
 |-- cart: integer (nullable = true)
 |-- buy: integer (nullable = true)

Row(userId=1061650, cateId=4520, pv=2326, fav=None, cart=53, buy=None)
  • 处理每一行数据:r表示row对象
def process_row(r):
    # 处理每一行数据:r表示row对象
    
    # 偏好评分规则:
	#     m: 用户对应的行为次数
    #     该偏好权重比例,次数上限仅供参考,具体数值应根据产品业务场景权衡
	#     pv: if m<=20: score=0.2*m; else score=4
	#     fav: if m<=20: score=0.4*m; else score=8
	#     cart: if m<=20: score=0.6*m; else score=12
	#     buy: if m<=20: score=1*m; else score=20
    
    # 注意这里要全部设为浮点数,spark运算时对类型比较敏感,要保持数据类型都一致
	pv_count = r.pv if r.pv else 0.0
	fav_count = r.fav if r.fav else 0.0
	cart_count = r.cart if r.cart else 0.0
	buy_count = r.buy if r.buy else 0.0

	pv_score = 0.2*pv_count if pv_count<=20 else 4.0
	fav_score = 0.4*fav_count if fav_count<=20 else 8.0
	cart_score = 0.6*cart_count if cart_count<=20 else 12.0
	buy_score = 1.0*buy_count if buy_count<=20 else 20.0

	rating = pv_score + fav_score + cart_score + buy_score
	# 返回用户ID、分类ID、用户对分类的偏好打分
	return r.userId, r.cateId, rating
  • 返回一个PythonRDD类型
# 返回一个PythonRDD类型,此时还没开始计算
cate_count_df.rdd.map(process_row).toDF(["userId", "cateId", "rating"])

显示结果:

DataFrame[userId: bigint, cateId: bigint, rating: double]
  • 用户对商品类别的打分数据
# 用户对商品类别的打分数据
# map返回的结果是rdd类型,需要调用toDF方法转换为Dataframe
cate_rating_df = cate_count_df.rdd.map(process_row).toDF(["userId", "cateId", "rating"])
# 注意:toDF不是每个rdd都有的方法,仅局限于此处的rdd
# 可通过该方法获得 user-cate-matrix
# 但由于cateId字段过多,这里运算量比很大,机器内存要求很高才能执行,否则无法完成任务
# 请谨慎使用

# 但好在我们训练ALS模型时,不需要转换为user-cate-matrix,所以这里可以不用运行
# cate_rating_df.groupBy("userId").povit("cateId").min("rating")
# 用户对类别的偏好打分数据
cate_rating_df

显示结果:

DataFrame[userId: bigint, cateId: bigint, rating: double]
  • 通常如果USER-ITEM打分数据应该是通过一下方式进行处理转换为USER-ITEM-MATRIX

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bYZwXB3C-1691901742059)(/img/CF%E4%BB%8B%E7%BB%8D.png)]

但这里我们将使用的Spark的ALS模型进行CF推荐,因此注意这里数据输入不需要提前转换为矩阵,直接是 USER-ITEM-RATE的数据

  • 基于Spark的ALS隐因子模型进行CF评分预测

    • ALS的意思是交替最小二乘法(Alternating Least Squares),是Spark2.*中加入的进行基于模型的协同过滤(model-based CF)的推荐系统算法。

      同SVD,它也是一种矩阵分解技术,对数据进行降维处理。

    • 详细使用方法:pyspark.ml.recommendation.ALS

    • 注意:由于数据量巨大,因此这里也不考虑基于内存的CF算法

      参考:为什么Spark中只有ALS

# 使用pyspark中的ALS矩阵分解方法实现CF评分预测
# 文档地址:https://spark.apache.org/docs/2.2.2/api/python/pyspark.ml.html?highlight=vectors#module-pyspark.ml.recommendation
from pyspark.ml.recommendation import ALS   # ml:dataframe, mllib:rdd

# 利用打分数据,训练ALS模型
als = ALS(userCol='userId', itemCol='cateId', ratingCol='rating', checkpointInterval=5)

# 此处训练时间较长
model = als.fit(cate_rating_df)
  • 模型训练好后,调用方法进行使用,具体API查看
# model.recommendForAllUsers(N) 给所有用户推荐TOP-N个物品
ret = model.recommendForAllUsers(3)
# 由于是给所有用户进行推荐,此处运算时间也较长
ret.show()
# 推荐结果存放在recommendations列中,
ret.select("recommendations").show()

显示结果:

+------+--------------------+
|userId|     recommendations|
+------+--------------------+
|   148|[[3347, 12.547271...|
|   463|[[1610, 9.250818]...|
|   471|[[1610, 10.246621...|
|   496|[[1610, 5.162216]...|
|   833|[[5607, 9.065482]...|
|  1088|[[104, 6.886987],...|
|  1238|[[5631, 14.51981]...|
|  1342|[[5720, 10.89842]...|
|  1580|[[5731, 8.466453]...|
|  1591|[[1610, 12.835257...|
|  1645|[[1610, 11.968531...|
|  1829|[[1610, 17.576496...|
|  1959|[[1610, 8.353473]...|
|  2122|[[1610, 12.652732...|
|  2142|[[1610, 12.48068]...|
|  2366|[[1610, 11.904813...|
|  2659|[[5607, 11.699315...|
|  2866|[[1610, 7.752719]...|
|  3175|[[3347, 2.3429515...|
|  3749|[[1610, 3.641833]...|
+------+--------------------+
only showing top 20 rows

+--------------------+
|     recommendations|
+--------------------+
|[[3347, 12.547271...|
|[[1610, 9.250818]...|
|[[1610, 10.246621...|
|[[1610, 5.162216]...|
|[[5607, 9.065482]...|
|[[104, 6.886987],...|
|[[5631, 14.51981]...|
|[[5720, 10.89842]...|
|[[5731, 8.466453]...|
|[[1610, 12.835257...|
|[[1610, 11.968531...|
|[[1610, 17.576496...|
|[[1610, 8.353473]...|
|[[1610, 12.652732...|
|[[1610, 12.48068]...|
|[[1610, 11.904813...|
|[[5607, 11.699315...|
|[[1610, 7.752719]...|
|[[3347, 2.3429515...|
|[[1610, 3.641833]...|
+--------------------+
only showing top 20 rows
  • model.recommendForUserSubset 给部分用户推荐TOP-N个物品
# 注意:recommendForUserSubset API,2.2.2版本中无法使用
dataset = spark.createDataFrame([[1],[2],[3]])
dataset = dataset.withColumnRenamed("_1", "userId")
ret = model.recommendForUserSubset(dataset, 3)

# 只给部分用推荐,运算时间短
ret.show()
ret.collect()    # 注意: collect会将所有数据加载到内存,慎用

显示结果:

+------+--------------------+
|userId|     recommendations|
+------+--------------------+
|     1|[[1610, 25.4989],...|
|     3|[[5607, 13.665942...|
|     2|[[5579, 5.9051886...|
+------+--------------------+

[Row(userId=1, recommendations=[Row(cateId=1610, rating=25.498899459838867), Row(cateId=5737, rating=24.901548385620117), Row(cateId=3347, rating=20.736785888671875)]),
 Row(userId=3, recommendations=[Row(cateId=5607, rating=13.665942192077637), Row(cateId=1610, rating=11.770171165466309), Row(cateId=3347, rating=10.35690689086914)]),
 Row(userId=2, recommendations=[Row(cateId=5579, rating=5.90518856048584), Row(cateId=2447, rating=5.624575138092041), Row(cateId=5690, rating=5.2555742263793945)])]
  • transform中提供userId和cateId可以对打分进行预测,利用打分结果排序后
# transform中提供userId和cateId可以对打分进行预测,利用打分结果排序后,同样可以实现TOP-N的推荐
model.transform
# 将模型进行存储
model.save("hdfs://localhost:8020/models/userCateRatingALSModel.obj")
# 测试存储的模型
from pyspark.ml.recommendation import ALSModel
# 从hdfs加载之前存储的模型
als_model = ALSModel.load("hdfs://localhost:8020/models/userCateRatingALSModel.obj")
# model.recommendForAllUsers(N) 给用户推荐TOP-N个物品
result = als_model.recommendForAllUsers(3)
result.show()

显示结果:

+------+--------------------+
|userId|     recommendations|
+------+--------------------+
|   148|[[3347, 12.547271...|
|   463|[[1610, 9.250818]...|
|   471|[[1610, 10.246621...|
|   496|[[1610, 5.162216]...|
|   833|[[5607, 9.065482]...|
|  1088|[[104, 6.886987],...|
|  1238|[[5631, 14.51981]...|
|  1342|[[5720, 10.89842]...|
|  1580|[[5731, 8.466453]...|
|  1591|[[1610, 12.835257...|
|  1645|[[1610, 11.968531...|
|  1829|[[1610, 17.576496...|
|  1959|[[1610, 8.353473]...|
|  2122|[[1610, 12.652732...|
|  2142|[[1610, 12.48068]...|
|  2366|[[1610, 11.904813...|
|  2659|[[5607, 11.699315...|
|  2866|[[1610, 7.752719]...|
|  3175|[[3347, 2.3429515...|
|  3749|[[1610, 3.641833]...|
+------+--------------------+
only showing top 20 rows
  • 召回到redis
import redis
host = "192.168.19.8"
port = 6379    
# 召回到redis
def recall_cate_by_cf(partition):
    # 建立redis 连接池
    pool = redis.ConnectionPool(host=host, port=port)
    # 建立redis客户端
    client = redis.Redis(connection_pool=pool)
    for row in partition:
        client.hset("recall_cate", row.userId, [i.cateId for i in row.recommendations])
# 对每个分片的数据进行处理 #mapPartition Transformation   map
# foreachPartition Action操作             foreachRDD
result.foreachPartition(recall_cate_by_cf)

# 注意:这里这是召回的是用户最感兴趣的n个类别
# 总的条目数,查看redis中总的条目数是否一致
result.count()

显示结果:

1136340

2.3 根据用户对品牌偏好打分训练ALS模型

from pyspark.sql.types import StructType, StructField, StringType, IntegerType

schema = StructType([
    StructField("userId", IntegerType()),
    StructField("brandId", IntegerType()),
    StructField("pv", IntegerType()),
    StructField("fav", IntegerType()),
    StructField("cart", IntegerType()),
    StructField("buy", IntegerType())
])
# 从hdfs加载预处理好的品牌的统计数据
brand_count_df = spark.read.csv("hdfs://localhost:8020/preprocessing_dataset/brand_count.csv", header=True, schema=schema)
# brand_count_df.show()
def process_row(r):
    # 处理每一行数据:r表示row对象
    
    # 偏好评分规则:
	#     m: 用户对应的行为次数
    #     该偏好权重比例,次数上限仅供参考,具体数值应根据产品业务场景权衡
	#     pv: if m<=20: score=0.2*m; else score=4
	#     fav: if m<=20: score=0.4*m; else score=8
	#     cart: if m<=20: score=0.6*m; else score=12
	#     buy: if m<=20: score=1*m; else score=20
    
    # 注意这里要全部设为浮点数,spark运算时对类型比较敏感,要保持数据类型都一致
	pv_count = r.pv if r.pv else 0.0
	fav_count = r.fav if r.fav else 0.0
	cart_count = r.cart if r.cart else 0.0
	buy_count = r.buy if r.buy else 0.0

	pv_score = 0.2*pv_count if pv_count<=20 else 4.0
	fav_score = 0.4*fav_count if fav_count<=20 else 8.0
	cart_score = 0.6*cart_count if cart_count<=20 else 12.0
	buy_score = 1.0*buy_count if buy_count<=20 else 20.0

	rating = pv_score + fav_score + cart_score + buy_score
	# 返回用户ID、品牌ID、用户对品牌的偏好打分
	return r.userId, r.brandId, rating
# 用户对品牌的打分数据
brand_rating_df = brand_count_df.rdd.map(process_row).toDF(["userId", "brandId", "rating"])
# brand_rating_df.show()
  • 基于Spark的ALS隐因子模型进行CF评分预测

    • ALS的意思是交替最小二乘法(Alternating Least Squares),是Spark中进行基于模型的协同过滤(model-based CF)的推荐系统算法,也是目前Spark内唯一一个推荐算法。

      同SVD,它也是一种矩阵分解技术,但理论上,ALS在海量数据的处理上要优于SVD。

      更多了解:pyspark.ml.recommendation.ALS

      注意:由于数据量巨大,因此这里不考虑基于内存的CF算法

      参考:为什么Spark中只有ALS

  • 使用pyspark中的ALS矩阵分解方法实现CF评分预测文章来源地址https://www.toymoban.com/news/detail-652939.html

# 使用pyspark中的ALS矩阵分解方法实现CF评分预测
# 文档地址:https://spark.apache.org/docs/latest/api/python/pyspark.ml.html?highlight=vectors#module-pyspark.ml.recommendation
from pyspark.ml.recommendation import ALS

als = ALS(userCol='userId', itemCol='brandId', ratingCol='rating', checkpointInterval=2)
# 利用打分数据,训练ALS模型
# 此处训练时间较长
model = als.fit(brand_rating_df)
# model.recommendForAllUsers(N) 给用户推荐TOP-N个物品
model.recommendForAllUsers(3).show()
# 将模型进行存储
model.save("hdfs://localhost:9000/models/userBrandRatingModel.obj")
# 测试存储的模型
from pyspark.ml.recommendation import ALSModel
# 从hdfs加载模型
my_model = ALSModel.load("hdfs://localhost:9000/models/userBrandRatingModel.obj")
my_model
# model.recommendForAllUsers(N) 给用户推荐TOP-N个物品
my_model.recommendForAllUsers(3).first()

到了这里,关于二 根据用户行为数据创建ALS模型并召回商品的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 1、电商数仓(用户行为采集平台)数据仓库概念、用户行为日志、业务数据、模拟数据、用户行为数据采集模块、日志采集Flume

    数据仓库( Data Warehouse ),是为企业制定决策,提供数据支持的。可以帮助企业,改进业务流程、提高产品质量等。 数据仓库的输入数据通常包括:业务数据、用户行为数据和爬虫数据等。 业务数据:就是各行业在处理事务过程中产生的数据。比如用户在电商网站中登录、

    2024年02月12日
    浏览(44)
  • react后端开发:如何根据特定ID创建新的用户信息?

    以音乐app开发为例,我们想要在想要创建新的唱片库,就需要使用Post连接服务器端新建唱片ID,并在该ID处插入唱片信息。怎么做呢? 使用create同时创建id和唱片信息 不过在这之前,我们一般先需要进行判断,新写入的唱片是否存在,比如某用户已经上传了周杰伦的青花瓷,

    2024年01月23日
    浏览(54)
  • 拼多多根据ID取商品详情原数据 API 实现实时数据获取的完整指南

    在电商行业中,商品详情页是用户了解商品信息、进行购买决策的重要页面。为了提高用户体验和促进销售,电商平台通常会提供商品详情的API接口,以便第三方应用能够实时获取商品数据。本文将介绍如何使用拼多多获得的根据ID取商品详情原数据的API实现实时数据获取,

    2024年01月21日
    浏览(67)
  • 电商数据平台西域根据ID取商品详情API接口采集产品详情数据、价格 、销量数据操作指南

    公共参数 请求地址: 注册调用key请求接入 名称 类型 必须 描述 key String 是 调用key(必须以GET方式拼接在URL中) secret String 是 调用密钥 api_name String 是 API接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等] cache String 否 [yes,no]默认yes,将调用缓存的数据,速度比较

    2024年02月07日
    浏览(42)
  • 数仓用户行为数据分析

    分层优点:复杂的东西可以简单化、解耦(屏蔽层作用)、提高复用、方便管理 SA 贴源  数据组织结构与源系统保持一致 shm 历史层  针对不同特征的数据做不同算法,目的都是为了得到一份完整的数据 PDM 明细层 做最细粒度的数据明细,最高扩展性和灵活性,企业级的数据

    2024年02月08日
    浏览(42)
  • 大数据实战 --- 淘宝用户行为数据分析

    目录 开发环境  数据描述 功能需求 数据准备 数据清洗 用户行为分析 找出有价值的用户 Hadoop+Hive+Spark+HBase 启动Hadoop :start-all.sh 启动zookeeper :zkServer.sh start 启动Hive : nohup hiveserver2 1/dev/null 21 beeline -u jdbc:hive2://192.168.152.192:10000 启动Hbase : start-hbase.sh hbase shell 启动Spark :s

    2023年04月22日
    浏览(60)
  • Python大数据-对淘宝用户的行为数据分析

    import pandas as pd import numpy as np import matplotlib.pyplot as plt import os data.shape[0] 总流量为12256906,在计算一下 日平均流量、日平均独立访客数 ##日PV pv_daily = data.groupby([‘date’])[‘user_id’].count().reset_index().rename(columns={‘user_id’:‘pv_daily’}) pv_daily.head() 日平均独立访客数与日平均流

    2024年04月25日
    浏览(73)
  • 社交媒体数据分析:解读Facebook用户行为

    在当今数字化时代,社交媒体已经成为人们生活不可或缺的一部分,而Facebook作为这个领域的巨头,承载了数十亿用户的社交活动。这庞大的用户群体产生了海量的数据,通过深度数据分析,我们能够深入解读用户行为,从而更好地满足用户需求、提升用户体验,同时为平台

    2024年01月21日
    浏览(53)
  • 【产品运营】如何通过数据分析掌握用户行为?

    对于运营来说,需要掌握用户行为来制定不同的运营策略。而用户行为是通过数据分析得出的,那么,具体的数据分析是哪些数据,不同的数据又有什么区别? 快速了解一款APP。 行业趋势,市场空间。 APP的生存现状,所处阶段,遇到的问题。 产品迭代,发现新的增长引擎方

    2024年02月11日
    浏览(46)
  • 天池赛:淘宝用户购物行为数据可视化分析

    目录 前言 一、赛题介绍 二、数据清洗、特征构建、特征可视化 1.数据缺失值及重复值处理 2.日期分离,PV及UV构建 3.PV及UV可视化 4.用户行为可视化 4.1 各个行为的面积图(以UV为例) 4.2 各个行为的热力图 5.转化率可视化 三、RFM模型 1.构建R、F、M 2.RFM的数据统计分布 3.计算

    2024年01月22日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包