Clickhouse基于文件复制写入

这篇具有很好参考价值的文章主要介绍了Clickhouse基于文件复制写入。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

目前clickhouse社区对于数据的写入主要基于文件本地表、分布式表方式为主,但缺乏大批量快速写入场景下的数据写入方式,本文提供了一种基于clickhouse local 客户端工具分布式处理hdfs数据表文件,并将clickhouse以文件复制的方式完成写入clickhouse的方法。该方案通过spark程序实现,经测试:

(1)在相同资源下,与传统的写clickhouse基于http/tcp的方式,可提供3倍左右的性能。

(2)传统数据写过程中,clickhouse-server需要处理写入的数据,写性能主要受clickhouse集群网络、cpu、内存限制,无法通过扩展写入客户端端并发来提高写入性能,本方案将数据处理端放在了插入客户端,写入性能理论上可以线性扩展提升。

方案

传统基于http/tcp写方案

目前clickhouse 官方推介3种数据写入方式

  • official JDBC driver
  • ClickHouse-Native-JDBC
  • clickhouse4j

jdbc主要基于如下形式进行:

Clickhouse基于文件复制写入,clickhouse

 基于jdbc写入的基本流程是spark集群(分布式计算引擎)读取hdfs文件,转换为dataframe后通过调用clickhouse jdbc方式,将数据写入至clickhouse服务端,clickhouse服务端完成本批次数据的生成。

clickhouse server端具体生成文件的流程为:

(1)ck集群分布式表接收到spark发送的写请求后,会更加分片键进行数据划分,对于数据属于本地分片分片的数据,直接写入本地表。对于数据属于其他分片的数据会先写入至临时目录下。

(2)对于clickhouse集群,数据的读写DDL都是依赖于zookeeper进行的,会将操作的日志写入至zk的/log下,并形成相应的task

(3)当数据写入本地表后,会将操作日志写入zk /log中,集群其他ck节点监听到/log变化后,会触发相应的ck节点拉去log操作并转换成task放入自身对应节点下的/queue中,其他节点将开始拉去该分片数据,并写入自身本地表中,同时对于分片副本原理类似。

(4)完成本次数据的拉取复制后,将移除/queue中对应的task,完成本次数据的写入。

从上面的流程中我们知道,数据的写入都是先将数据写入至分片表的本地然后复制至其他集群节点实现的,因此,clickhouse的分片表所在的机器常常负载比较大;数据的同步依赖zk进行的,zk压力也较大。

基于文件复制写方式

为了解决上述批量数据数据写入场景下的问题,社区提出了一种新的思路,即使用clickhouse local将先将数据处理成clickhouse 文件,完成后直接复制至clickhouse集群,这样大大减轻了clickhouse集群处理数据的压力,同时数据写入性能理论上可以与客户端并发写入线性增长。当前大多数公司使用clickhouse分析的数据不会在原始数据集上进行,常常是数仓加工后的明细数据,通常流程是原始数据集导入至数仓,输出加工处理,处理后的数据导出至clickhouse用于OLAP分析。本文针对这样的场景,提供了一种直接读取数仓加工生成的parquet等文件,使用spark、clickhouse-local分布式处理ck文件格式,并导入至clickhouse中,具体如下图所示:

Clickhouse基于文件复制写入,clickhouse

 其中,spark集群中的spark node并不会读写hive表数据,而只是依赖spark分布程序将hive表所在hdfs上的文件分布式的方式下载至yarn node本地机器,然后调用本地机上的clickhouse local 命名,将不同文件格式的文件(parquet\orc\text\csv等)生成为clickhouse 文件块,最后通过直接通过ssh命令的方式将加工处理好的cickhouse数据复制clickhouse集群,并调用clickhouse attach part命令将数据块merge至表中,期间clickhouse表数据的所有处理动作执行端放在了spark node中进行,ck集群只负责数据的接收,大大提高了数据批量写入性能,sparknode具体处理过程如下图所示:

Clickhouse基于文件复制写入,clickhouse

 

性能测试

经测试,在相同spark资源情况下,基于文件复制写入clickhouse的方式比jdbc方式写入性能有2~3倍的性能提升,且理论上文件复制方式写入可以伴随spark node增加而线性增长,在parquet格式的数据表上,不同写入方式下clickhouse完成时间对比结果如下图所示:

Clickhouse基于文件复制写入,clickhouse文章来源地址https://www.toymoban.com/news/detail-653000.html

到了这里,关于Clickhouse基于文件复制写入的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Flink-Kafka-To-ClickHouse】使用 Flink 实现 Kafka 数据写入 ClickHouse

    需求描述: 1、数据从 Kafka 写入 ClickHouse。 2、相关配置存放于 Mysql 中,通过 Mysql 进行动态读取。 3、此案例中的 Kafka 是进行了 Kerberos 安全认证的,如果不需要自行修改。 4、先在 ClickHouse 中创建表然后动态获取 ClickHouse 的表结构。 5、Kafka 数据为 Json 格式,通过 FlatMap 扁平

    2024年02月03日
    浏览(47)
  • spark读取、写入Clickhouse以及遇到的问题

    最近需要处理Clickhouse里面的数据,经过上网查找总结一下spark读写Clickhouse的工具类已经遇到的问题点。具体Clickhouse的讲解本篇不做讲解,后面专门讲解这个。 话不多说直接看代码 1.引入依赖: 0.2.4  这个版本用的比较多一点 2.spark对象创建  3.spark读取clickhouse数据:

    2024年02月03日
    浏览(46)
  • flink-cdc,clickhouse写入,多路输出

    kafka日志数据从kafka读取 1、关联字典表:完善日志数据 2、判断日志内容级别:多路输出 低级:入clickhouse 高级:入clickhouse的同时推送到kafka供2次数据流程处理。

    2024年02月09日
    浏览(43)
  • Clickhouse分布式表引擎(Distributed)写入核心原理解析

    Clickhouse分布式表引擎(Distributed)写入核心原理解析 Clickhouse分布式表引擎(Distributed)查询核心原理解析 Distributed表引擎是分布式表的代名词,它自身不存储任何数据,而是作为数据分片的透明代理,能够自动路由数据至集群中的各个节点 ,所以Distributed表引擎需要和其他数

    2023年04月27日
    浏览(48)
  • 基于clickhouse keeper搭建clickhouse集群

    主机名 IP my-db01 192.168.1.214 my-db02 192.168.1.215 my-db03 192.168.1.216 hosts设置 使用 admin 用户安装: 添加官方镜像 安装 clickhouse-server和clickhouse-client 版本信息: 操作系统:CentOS Linux release 7.9.2009 (Core) systemd:219 clickhouse-client:23.2.4.12-1.x86_64 clickhouse-server:23.2.4.12-1.x86_64 clickhouse-commo

    2024年02月12日
    浏览(45)
  • 用ClickHouse 文件表引擎快速查询分析文件数据

    有时我们需要快速查询分析文件数据,正常流程需要在数据库中创建表,然后利用工具或编码导入数据,这时才能在数据库中查询分析。利用ClickHouse文件引擎可以快速查询文件数据。本文首先介绍ClickHouse文件引擎,然后介绍如何快速实现查询数据文件的方案。 文件表引擎在

    2024年02月13日
    浏览(46)
  • 探索ClickHouse——同时支持导入导出功能的文件格式

    在 《探索ClickHouse——安装和测试》中,我们使用clickhouse直接从文件中读取数据。clickhouse支持多种格式文件的导入导出,本节我们对此进行分类介绍。 原始的JSON格式只支持导入,不支持导入。同时支持导入和导出的是其他几种类型: JSONEachRow JSONStringsEachRow JSONCompactEachRow

    2024年02月07日
    浏览(47)
  • B站基于Clickhouse的下一代日志体系建设实践

    01 背景介绍 日志作为线上定位问题排障的重要手段,在可观测领域有着不可替代的作用。 稳定性、成本、易用性、可扩展性都是日志系统需要追求的关键点。 B站基于Elastic Stack的日志系统(Billions) 从2017建设以来, 已经服务了超过5年,目前规模超过500台机器,每日写入日

    2024年02月05日
    浏览(77)
  • 华为云云服务器评测|基于华为云云耀云服务器L实例开展性能评测,例如 MySQL、Clickhouse、Elasticsearch等等

    在当今云计算时代,越来越多的企业和个人开始选择将应用部署在云服务器上,以便更好地满足高性能、可靠性和可扩展性等需求。而华为云云耀云服务器L实例不仅提供了高性能和可靠性的计算和存储资源,而且具有灵活和高效的成本控制,深受广大用户的青睐。在这个背景

    2024年02月11日
    浏览(68)
  • ClickHouse列存储(十一)—— ClickHouse

    1.数据库基本概念 2.列式存储 3.clickHouse存储设计 4.clickHouse典型应用场景 1、了解数据库基本概念 数据库 DBMS:数据库管理系统 OLTP 数据库 : OLTP(Online transactional processing) OLAP 数据库:OLAP (Online analytical processing) SQL (Structured Query Language) 词法分析 语法分析 AST (Abstract syntax t

    2024年02月10日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包