【数学建模】逻辑回归算法(Logistic Resgression)

这篇具有很好参考价值的文章主要介绍了【数学建模】逻辑回归算法(Logistic Resgression)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简介

逻辑回归算法是一种简单但功能强大的二元线性分类算法。需要注意的是,尽管"逻辑回归"名字带有“回归”二字,但逻辑回归是一个分类算法,而不是回归算法。
我认为,逻辑回归算法功能强大的原因,更在于,它不仅仅可以预测类别标签,而且还可以预测类别的概率。
比如说,使用逻辑回归预测天气,不仅仅可以预测某一天是否会下雨,还可以给出下雨的概率。类似地,也可以使用逻辑回归算法来预测症状给定的情况下患者患有某种疾病的概率,这也是逻辑回归在医学领域广受欢迎的原因。

逻辑回归与条件概率

逻辑回归是一个二元分类概率模型。下面我们主要了解一下逻辑回归背后的主要机制。
  p \ p  p:感兴趣事件发生的概率(所谓感兴趣,正是我们想要预测的事件,比如患者在出现某些症状时患病的概率。)
几率(odds):是一个事件发生可能性的度量。数学表达式为: p 1 − p \frac{p}{1-p} 1pp.
logit 函数:logit函数是几率(odds)的对数函数:
  l o g i t ( p ) = log ⁡ p 1 − p \ logit(p)=\log \frac{p}{1-p}  logit(p)=log1pp
这里的log是自然对数。logit函数的输入即p是一个介于0-1之间的正数,输出即logit§为任意实数。
那如何将这里的输出将我们的数据相联系起来呢?
我们假设我们的输出即logit§与每一个样本的特征值   x 1 x 2 x 3 . . . x m \ x_1 x_2 x_3...x_m  x1x2x3...xm的加权(   w T \ w^T  wT)和加偏置顶存在线性关系,即:
l o g i t ( p ) = w 1 x 1 + w 2 x 2 + . . . . . . + w m x m + b = ∑ j = 1 m w j x j + b = w T x + b logit(p)=w_1x_1+w_2x_2+......+w_mx_m+b=\sum_{j=1}^mw_jx_j+b=w^Tx+b logit(p)=w1x1+w2x2+......+wmxm+b=j=1mwjxj+b=wTx+b
当我们真正感兴趣的是条件概率 p p p,即在给定一个样本特征的前提下求解类别标签为1的概率。
通过logit函数,我们可以将条件概率p映射为一个实数。那反过来,我们要求p的话呢?所以,我们可以根据logit函数求解出它的逆函数。
logit函数的逆函数通常称为logistic sigmoid函数。由于这个函数具有S形状,因此有时也简称为sigmoid函数
σ ( z ) = 1 1 = e − z \sigma(z)=\frac{1}{1=e^{-z}} σ(z)=1=ez1
这里z是净输入,为样本的加权和加偏置顶:
z = w T x + b z=w^Tx+b z=wTx+b

绘制sigmoid函数

import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
z=np.arange(-7,7,0.1)
sigma_z=sigmoid(z)
plt.plot(z,sigma_z)
plt.axvline(0.0,color='k')
plt.ylim(-0.1,1.1)
plt.xlabel('z')
plt.ylabel('$\sigma(z)$')
plt.yticks([0.0,0.5,1.0])
ax=plt.gca()
ax.yaxis.grid(True)
plt.tight_layout()
plt.show()

【数学建模】逻辑回归算法(Logistic Resgression),数学建模,数学建模,回归,数据挖掘
但输入的 z z z为0时,输出p为0.5。当输入的z趋近于 + ∞ + \infty +时,输出p接近于1。当输入的趋近于 − ∞ - \infty 时,输出p接近于1。
而且当输入的 z > 0 z>0 z0,那么p>0.5,可以判别是预测事件的发生。当 z < 0 z<0 z0时,可以认为是预测事件的不发生。即对应的二值输出为:
y ^ = { 1 如果 σ ( z ) ≥ 0.5 0 其他 \widehat{y}=\begin{cases} 1 如果\sigma(z)≥0.5\\ 0 其他 \end{cases} y ={1如果σ(z)0.50其他文章来源地址https://www.toymoban.com/news/detail-653007.html

到了这里,关于【数学建模】逻辑回归算法(Logistic Resgression)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模之回归分析算法(含matlab源代码)

    目录 一、一元线性回归 1、步骤  2、matlab命令(多元线性回归) 3、举例  二、一元非线性回归  三、多项式回归 1、一元多项式回归  应用  2、多元二项式 应用  四、非线性回归  应用 五、 逐步回归  应用    r²和F越大越好 p越小越好      从残差图可以看出,除第二个

    2024年02月09日
    浏览(63)
  • 数学建模-人口模型Logistic模型与 Malthus模型

    一. 问题 及 重述: 下表是中国人口数据,请根据这些数据建立适当的数学模型对其进行描述,并预测2002、2003、2004年的中国人口数。 给出模型,求解代码及必要的图形,误差分析结果。 重述: 选取合适的模型预测2002,2003、2004年的中国人口数; 建立数学模型、给出求解代码

    2024年02月06日
    浏览(64)
  • 数学建模学习:岭回归和lasso回归

    线性回归 在多元线性回归模型中,估计回归系数使用的是OLS,并在最后讨论异方差和多重共线性对模型的影响。事实上,回归中自变量的选择大有门道,变量过多可能会导致多重共线性问题导致回归系数不显著,甚至造成OLS估计失效。 岭回归和lasso回归在OLS回归模型的损失函

    2024年02月08日
    浏览(46)
  • 数学建模|回归分析

    人们关心的 因变量 受 自变量 的关联性(非因果性)的影响,并且存在众多随机因素,难以用机理分析方法找出它们之间的关系;需要建立这些变量的数学模型,使得 能够根据自变量的数值预测因变量的大小,或者解释因变量的变化。 换句话说:回归分析是一种类相关性分析

    2024年02月04日
    浏览(48)
  • 数学建模-线性回归

    回归分析: 通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。 本次主要学习线性回归。(划分依据是因变量Y的类型) ps. other 0-1回归,定序回归,计数回归,生存回归 a. : 相关性 , Y , X 相关性 != 因果性 Y 是需

    2023年04月09日
    浏览(42)
  • 数学建模:回归分析

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 案例 首先进行回归分析 p 0.05 p0.05 p 0.05 回归模型成立 建立残差图 一元多项式回归 案例 直接做二次多项式回归 化为多元线性回归 多元二项式回归 案例 直接多元二项式回归 化为多元线性回归 25 回归分析算法基本原理及编程

    2024年02月09日
    浏览(42)
  • 数学建模常用模型——回归

            今天我们来介绍一下回归。回归在百度百科里面的定义是:回归是一种数学模型,研究一组随机变量(Y1 ,Y2 ,…,Yi)和另一组(X1,X2,…,Xk)变量之间关系的统计分析方法,又称多重回归分析。通常Y1,Y2,…,Yi是因变量,X1、X2,…,Xk是自变量。回归主要的种类有

    2024年02月16日
    浏览(37)
  • 数学建模-多元线性回归笔记

    1.学模型✅ 2.看专题论文并复习算法 多元线性回归 无偏性:预测值与真实值非常接近 一致性:样本量无限增大,收敛于待估计参数的真值 如何做:控制核心解释变量和u不相关 四类模型回归系数的解释 截距项不用考虑 一元线性回归:y = a + bx + u x每增加1个单位,y平均变化

    2024年02月12日
    浏览(37)
  • 【数学建模】-多元线性回归分析

    学习来源:清风老师 回归分析的任务就是,通过研究 自变量X和因变量Y的相关关系 ,尝试去解释Y的形成机制,进而达到通过X去 预测Y 的目的。 常见的回归分析有五类: 线性回归、0‐1回归、定序回归、计数回归和生存回归 ,其划分的依据是因变量Y的类型。 回归分析:研

    2024年02月05日
    浏览(65)
  • 数学建模—多元线性回归分析(+lasso回归的操作)

    定义:回归分析是数据分析中最基础也是最重要的分析工具,绝大多数的数据分析问题,都可以使用回归的思想来解决。回归分析的人数就是,通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。 常见的回归分析有五类:线性回归

    2024年02月13日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包