Python Opencv实践 - 图像透射变换

这篇具有很好参考价值的文章主要介绍了Python Opencv实践 - 图像透射变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt


img = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
rows,cols = img.shape[:2]
print(rows,cols)

#opencv中的透射变换,需要一个3x3透射变换矩阵
#这个矩阵可以通过cv.getPerspectiveTransform(src,dst)获得
#src是原图中的4个点的坐标,dst是目标图像中的4个点的坐标(任意三个点不共线)
#参考资料:https://blog.csdn.net/qq_50394133/article/details/123832496
srcPts = np.float32([[56,65],[368,52],[28,387],[389,390]])
dstPts = np.float32([[100,145],[300,100],[80,290],[310,300]])
M_perspective = cv.getPerspectiveTransform(srcPts,dstPts)


#图像透射变换
#cv.warpPerspective(src,M,dsize,dst,flags,borderMode,borderValue)
img_perspective = cv.warpPerspective(img,M_perspective,(cols,rows))

#显示图像
fig,axes = plt.subplots(nrows=1, ncols=2, figsize=(12,12), dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("Original")
axes[1].imshow(img_perspective[:,:,::-1])
axes[1].set_title("Perspective Transform")

Python Opencv实践 - 图像透射变换,OpenCV实践-python,python,opencv,开发语言,图像处理,计算机视觉

 Python Opencv实践 - 图像透射变换,OpenCV实践-python,python,opencv,开发语言,图像处理,计算机视觉

 文章来源地址https://www.toymoban.com/news/detail-653315.html

到了这里,关于Python Opencv实践 - 图像透射变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《数字图像处理-OpenCV/Python》连载(44)图像的投影变换

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 几何变换分为等距变换、相似变换、仿射变换和投影变换,是指对图像的位置、大小、形状和投影进行变换,将图像从原始平面投影到新的视平面。OpenCV图像的几

    2024年02月04日
    浏览(69)
  • 【Python图像处理篇】opencv中的仿射变换和透视变换

    仿射变换可以将矩形图片映射为平行四边形, 透视变换可以将矩形图片映射为任意四边形。 opencv提供了两个变换函数,cv2.warpAffine和cv2.warpPerspective, 使用这两个函数可以实现所有类型的变换。 cv2.warpAffine 接收的参数2x3的变换矩阵; 而 cv2.warpPerspective 接收的3x3的变换矩阵。

    2024年01月24日
    浏览(62)
  • OpenCV-Python学习(21)—— OpenCV 图像几何变换之图像翻转(cv.flip、np.flip)

    1. 学习目标 学习 OpenCV 图像的翻转函数 cv.flip; 学习 NumPy 矩阵的反转函数 np.flip; 自己实现矩阵反转的函数。 2. OpenCV 翻转 翻转也称镜像,是指将图像沿轴线进行轴对称变换。水平镜像是将图像沿垂直中轴线进行左右翻转,垂直镜像是将图像沿水平中轴线进行上下翻转,水平

    2024年02月06日
    浏览(56)
  • Python-OpenCV中的图像处理-霍夫变换

    霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。 Hough直线变换,可以检测一张图像中的直线 cv2.HoughLines(image, rho, theta, threshold) return:返回值

    2024年02月13日
    浏览(59)
  • Python-OpenCV中的图像处理-几何变换

    对图像进行各种几个变换,例如移动,旋转,仿射变换等。 cv2.resize() cv2.INTER_AREA v2.INTER_CUBIC v2.INTER_LINEAR res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) 或 height, width = img.shape[:2] res = cv2.resize(img, (2 width, 2 height), interpolation=cv2.INTER_CUBIC) OpenCV提供了使用函数cv2.warpAffine()实

    2024年02月13日
    浏览(88)
  • OpenCV-Python中的图像处理-霍夫变换

    霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。 Hough直线变换,可以检测一张图像中的直线 cv2.HoughLines(image, rho, theta, threshold) return:返回值

    2024年02月12日
    浏览(44)
  • OpenCV-Python中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(41)
  • Python-OpenCV中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(58)
  • Python Opencv实践 - 图像平移

     

    2024年02月13日
    浏览(42)
  • Python Opencv实践 - 图像混合

               

    2024年02月13日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包