Softmax Strategy

这篇具有很好参考价值的文章主要介绍了Softmax Strategy。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 1. epsilon-greedy strategy

11111

2. UCB strategy

222

3. Softmax  strategy

333

4. Gradient strategy

444

References

[1] 科学网—【RL系列】Multi-Armed Bandit笔记——Softmax选择策略 - 管金昱的博文

[2] The Epsilon-Greedy Algorithm | James D. McCaffrey文章来源地址https://www.toymoban.com/news/detail-653527.html

到了这里,关于Softmax Strategy的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

    偏理论,假设情况不易发生 多智能体强化学习的换道策略,不同的智能体在每一轮学习后交换策略,达到零和博弈。 和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率,奖励机制结合个人效率和整体效率的和谐。 自动驾驶不能过分要求速度性能, 考虑单个车

    2024年01月17日
    浏览(43)
  • RLHF:基于人类反馈(Human Feedback)对语言模型进行强化学习【Reinforcement Learning from Human Feedback】

    HuggingFace发表了一篇博客,详细讲解了ChatGPT背后的技术原理——RLHF。 笔者读过之后,觉得讲解的还是蛮清晰的,因此提炼了一下核心脉络,希望给对ChatGPT技术原理感兴趣的小伙伴带来帮助。 此外,文末整理了几篇关于 RLHF 最热门的12篇必读论文,卖萌酱打包好挂在公众号后

    2023年04月22日
    浏览(47)
  • 强化学习论文阅读——自动分组Self-Organized Group for Cooperative Multi-Agent Reinforcement Learning

    Self-Organized Group for Cooperative Multi-Agent Reinforcement Learning 这是一篇发表在NeurIPS2022的论文,文章提出了一种分组算法,旨在提高算法零样本泛化能力 1 论文背景 CTDE :集中训练分散执行,在训练阶段将所有智能体的Q值加到一起去训练,训练完了之后在执行阶段大家各自执行自己

    2024年01月25日
    浏览(58)
  • 商简智能学术成果|基于深度强化学习的联想电脑制造调度(Lenovo Schedules Laptop Manufacturing Using Deep Reinforcement Learning)

    获取更多资讯,赶快关注上面的公众号吧!   本篇论文作为商简智能的最新研究成果,发表于运筹学顶刊《INFORMS JOURNAL ON APPLIED ANALYTICS》, 首次将深度强化学习落地于大规模制造调度场景 ,该先进排程项目入围国际运筹学权威机构 INFORMS运筹学应用最高奖——Franz Edelman

    2024年02月09日
    浏览(140)
  • Softmax Strategy

     1. epsilon-greedy strategy 11111 2. UCB strategy 222 3. Softmax  strategy 333 4. Gradient strategy 444 References [1] 科学网—【RL系列】Multi-Armed Bandit笔记——Softmax选择策略 - 管金昱的博文 [2] The Epsilon-Greedy Algorithm | James D. McCaffrey

    2024年02月12日
    浏览(17)
  • 2 机器学习知识 Softmax回归 deep learning system

    The hypothesis class: 模型结构 loss fuction 损失函数 An optimization method:在训练集上减小loss的方法 训练数据: x ( i ) ∈ R n , y ( i ) ∈ 1 , . . . , k f o r i = 1 , . . . m x^{(i)}in mathbb{R}^n ,y^{(i)}in {1,...,k} for i=1,...m x ( i ) ∈ R n , y ( i ) ∈ 1 , ... , k f or i = 1 , ... m n 是输入数据的维度,输入的每

    2024年02月05日
    浏览(42)
  • [machine Learning]强化学习

    强化学习和前面提到的几种预测模型都不一样,reinforcement learning更多时候使用在控制一些东西上,在算法的本质上很接近我们曾经学过的DFS求最短路径. 强化学习经常用在一些游戏ai的训练,以及一些比如火星登陆器,月球登陆器等等工程领域,强化学习的内容很简单,本质就是获取

    2024年02月09日
    浏览(42)
  • 【强化学习】——Q-learning算法为例入门Pytorch强化学习

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机研究生在读,研究方向复杂网络和数据挖掘,阿里云专家博主,华为云云享专家,CSDN专家博主、人工智能领域优质创作者,安徽省优秀毕业生 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话

    2024年02月10日
    浏览(72)
  • 强化学习 - Q-learning(Q学习)

    强化学习中的 Q-learning (Q学习)是一种用于 学习在未知环境中做出决策的方法 。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。 以下是一个简单的 Q-learning 的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾

    2024年01月24日
    浏览(60)
  • 强化学习Q-learning入门

    本文为最近学习的强化学习 Q-learning 的学习笔记,主要用于总结和日常记录,本文主要讲解相应的必备入门知识。 闲话少说,我们直接开始吧! 我们小时候都经历过以下情形:我们做错了某年事,受到了惩罚,我们学习后,在遇到类似的状况,我们将不会再犯错。同样,许

    2024年02月08日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包