分类预测 | MATLAB实现MTBO-CNN多输入分类预测

这篇具有很好参考价值的文章主要介绍了分类预测 | MATLAB实现MTBO-CNN多输入分类预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类预测 | MATLAB实现MTBO-CNN多输入分类预测

预测效果

分类预测 | MATLAB实现MTBO-CNN多输入分类预测,分类预测,MTBO-CNN,CNN,多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测,分类预测,MTBO-CNN,CNN,多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测,分类预测,MTBO-CNN,CNN,多输入分类预测
分类预测 | MATLAB实现MTBO-CNN多输入分类预测,分类预测,MTBO-CNN,CNN,多输入分类预测

基本介绍

1.MATLAB实现MTBO-CNN多输入分类预测
2.代码说明:基于登山队优化算法(MTBO)、卷积神经网络(CNN)的数据分类预测程序。
程序平台:要求于Matlab 2021版及以上版本。
特点:
通过登山队优化算法优化学习率、卷积核大小、卷积核个数,这3个关键参数,以测试集精度最高为目标函数。绘制:损失、精度迭代变化图;测试对比散点图、混淆矩阵图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。展示:精确度、召回率、精确率、F1分数等评价指标。可直接替换数据,使用EXCEL表格导入,无需大幅修改程序。代码内部有详细注释,便于理解程序运行。
登山队优化算法(Mountaineering Team-Based Optimization,MTBO)是由Faridmehr于2023年3月提出来的。该算法基于人类行为协调的智力和环境进化。登山队由多名登山者组成,领队经验丰富且专业,其目标是征服该地区的山顶,山顶被认为是优化问题的最终全局解。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现MTBO-CNN多输入分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
        
        % 自适应变异
        pos = unidrnd(numsum);
        if rand > 0.95
            pop(j, pos) = rands(1, 1);
        end
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

        % 群体最优更新 
        if fitness(j) < fitnesszbest
            zbest = pop(j, :);
            fitnesszbest = fitness(j);
        end

    end

    BestFit = [BestFit, fitnesszbest];    
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-653865.html

到了这里,关于分类预测 | MATLAB实现MTBO-CNN多输入分类预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测

    分类效果 基本介绍 结合1D时序-2D图像多模态融合的CNN-GRU故障识别算法,基于一维时序信号和二维图像多元信息融合的卷积神经网络结门控循环单元网络的数据分类预测/故障识别算法。要求2020版以上。 采用双支路输入,一路为图像输入经CNN提取特征,一路为特征序列输入经

    2024年02月12日
    浏览(43)
  • 分类预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元多输入分类预测

    效果一览 基本介绍 基于贝叶斯(bayes)优化卷积神经网络-门控循环单元(CNN-GRU)分类预测,BO-CNN-GRU/Bayes-CNN-GRU多输入分类模型。 1.优化参数为:学习率,隐含层节点,正则化参数。 2.可视化展示分类准确率,输入多个特征,输出四个类别。 3.运行环境matlab2020b及以上。 模型描述

    2023年04月23日
    浏览(45)
  • 分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测

    分类效果 基本描述 1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2021b及以上; 2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的数据分类预测程序; 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就

    2024年02月12日
    浏览(36)
  • 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测

    分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型,运行环境Matlab2023及以上; 2.通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数; 3.多特征输入单输出的二分类及多分类模型。程序内注释

    2024年02月12日
    浏览(35)
  • 分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测

    分类效果 基本描述 1.SCNGO-CNN-LSTM-Attention数据分类预测程序,改进算法,融合正余弦和折射反向学习的北方苍鹰优化算法; 2.程序平台:无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上; 3.基于融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)、卷

    2024年02月11日
    浏览(41)
  • 分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测

    效果一览 基本介绍 Matlab实现分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测(Matlab完整程序和数据) 凌日优化卷积神经网络结合门控循环单元融合注意力机制的数据分类预测是一种复杂的模型架构,旨在提高数据分类任务的性能。下面我将逐步介绍这个模型的各个

    2024年02月13日
    浏览(49)
  • 分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测

    分类效果 基本描述 1.Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测(完整源码和数据) 2.优化参数为:学习率,批量处理大小,正则化参数。 3.图很多,包括分类效果图,混淆矩阵图。 4.附赠案例数据可直接运行main一键出图~ 注意程序和数据放在一个文件夹,运

    2024年02月07日
    浏览(55)
  • 分类预测 | MATLAB实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测

    分类效果 基本描述 1.Matlab实现POA-CNN鹈鹕算法优化卷积神经网络多特征分类预测,多特征输入模型,运行环境Matlab2018b及以上; 2.基于鹈鹕算法(POA)优化卷积神经网络(CNN)分类预测,优化参数为,学习率,批处理,正则化参数; 3.多特征输入单输出的二分类及多分类模型。程序

    2024年02月07日
    浏览(46)
  • 分类预测 | MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测

    预测效果 基本介绍 MATLAB实现SSA-CNN-SVM基于麻雀算法优化卷积支持向量机分类预测,优化参数为:学习率,批量处理大小,正则化参数。图很多,包括分类效果图,迭代优化图,混淆矩阵图。 程序设计 完整程序和数据获取方式1:同等价值程序兑换; 完整程序和数据获取方式

    2024年02月10日
    浏览(45)
  • 分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)

    分类效果 基本描述 1.MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制),运行环境Matlab2021b及以上; 2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)、SE注意力机制的数据分类预测程序; 3.多特征输入单输出的二分类及多分类模型。程

    2024年02月08日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包