YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析

这篇具有很好参考价值的文章主要介绍了YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析,YOLOv5,YOLO,深度学习,机器学习,人工智能,目标检测

前言:Hello大家好,我是小哥谈。NMS是指非极大值抑制(non maximum suppression),它是一种常用于物体检测任务的算法。在物体检测中,通常会有多个预测框(bounding box)被提议出来,并且这些框可能存在重叠或者重复的情况。NMS的目的就是通过抑制非极大值的方式,来选择出最具代表性的框。本节课就给大家介绍一下非极大值抑制的概念、原理及其算法实现。🌈 

YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析,YOLOv5,YOLO,深度学习,机器学习,人工智能,目标检测 前期回顾:

           文章来源地址https://www.toymoban.com/news/detail-654300.html

到了这里,关于YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOv5基础知识点——激活函数

    ​​​​​​​什么是激活函数该选哪种激活函数?_哔哩哔哩_bilibili 深度学习笔记:如何理解激活函数?(附常用激活函数) - 知乎 (zhihu.com)  详解激活函数(Sigmoid/Tanh/ReLU/Leaky ReLu等) - 知乎 (zhihu.com) 算法面试问题二(激活函数相关)【这些面试题你都会吗】 - 知乎 (zhi

    2024年02月09日
    浏览(51)
  • YOLOv5基础知识点——卷积神经网络

    一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)- 产品经理的人工智能学习库 (easyai.tech) 人类的视觉原理如下 :从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形

    2024年02月05日
    浏览(51)
  • YOLOv5图像分割中的NMS处理

    在上一篇文章YOLOv5图像分割--SegmentationModel类代码详解有讲到图像经过YOLOv5网络后得到的输出形式,主要是调用了BaseModel类下的forward得到的输出,输出的shape为【batch,25200,117】,这里的25200相当于总的anchors数量【以640*640的输入为例,共有anchors=80*80*3+40*40*3+20*20*3】,117为5[x,y,

    2024年02月06日
    浏览(47)
  • 了解 YOLOv5 中的 NMS 多标签检测参数设置

    “NMS 多标签检测”(multi_label = False)是一个关于 YOLOv5 模型推理设置的参数,具体来说,它控制非最大抑制(NMS)的行为。要理解这个设置,我们首先需要了解 NMS 和它在目标检测中的作用。 非最大抑制 (NMS) 在目标检测任务中,模型会对图像中可能存在的每个目标输出多个

    2024年01月19日
    浏览(43)
  • 非极大值抑制(NMS)算法详解

    百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测部署简介与总览 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 Paddle Inference 模型推理(离线部署) 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - CentOS) 百度飞桨(PaddlePaddle) - PP

    2024年02月06日
    浏览(46)
  • 【目标检测】 非极大值抑制—NMS

    在目标检测任务中,一个目标可能会被多个边界框检测到,这些边界框可能会有不同的位置和大小,但表示同一个目标。 非极大值抑制 (Non-Maximum Suppression, NMS )是一种常用的方法,用于抑制这些重叠的边界框,只保留置信度最高的那个边界框,从而得到最终的目标检测结

    2024年02月04日
    浏览(42)
  • 春招面试准备笔记——NMS(非极大值抑制)算法

    NMS(非极大值抑制)算法非极大值抑制是用于减少物体检测算法中重叠边界框或区域的数量的技术。通过对每个类别的检测框按置信度排序,然后逐个遍历,保留置信度最高的框,并抑制与其重叠且置信度低的框,从而得到更准确和简洁的检测结果。 假设我们使用一个人脸检

    2024年02月21日
    浏览(61)
  • 【目标检测】非极大值抑制NMS的原理与实现

    非极大值抑制(Non-Maximum Suppression,NMS)是目标检测中常用的一种技术,它的主要作用是去除冗余和重叠过高的框,并保留最佳的几个。 NMS计算的具体步骤如下: 首先根据目标检测模型输出结果,得到一系列候选框及其对应的概率分数。 对所有候选框按照概率分数进行降序

    2024年02月08日
    浏览(40)
  • 【NMS,非极大值抑制】Python和C++的实现

    代码如下:

    2024年02月15日
    浏览(38)
  • 非极大值抑制详细原理(NMS含代码及详细注释)

    作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,YOLO,活动领域博主 爱笑的男孩。擅长深度学习,YOLO,活动,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=collect 个人介绍:打工人。 分享内容

    2023年04月21日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包