数学建模-多元线性回归笔记

这篇具有很好参考价值的文章主要介绍了数学建模-多元线性回归笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数学建模笔记

1.学模型✅
2.看专题论文并复习算法

  • 多元线性回归

    • 无偏性:预测值与真实值非常接近
    • 一致性:样本量无限增大,收敛于待估计参数的真值
    • 如何做:控制核心解释变量和u不相关
  • 四类模型回归系数的解释

    • 截距项不用考虑
    • 一元线性回归:y = a + bx + u
      • x每增加1个单位,y平均变化b个单位
    • 双对数模型:lny = a + blnx + u
      • x每增加1%,y平均变化b%
    • 半对数模型:y = a + blnx
      • x每增加1%,y平均变化b/100个单位
    • 半对数模型:lny = a + bx
      • x每增加1个单位,y平均变化(100b)%
  • 算回归系数要避免多重共线性

  • 客户对产品的关注度可以利用爬虫爬取评价量来表示

  • 多元线性回归 软件:STATA

    • 导入数据
    • 描述性统计:
      • 定量数据:summarize 评价量
        • 右键,复制表格
      • 定性数据:tabulate 变量名,<gen(A)>
        • 数据编辑器
    • 打开do文件,运行一部分
    • 回归数据说明
      • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-weXrLv8R-1692215418652)(media/16921742285760/16921799343967.jpg)]
  • STATA回归

    • regress y x1 x2 … xk(默认用OLS:普通最小二乘法)
    • 加入虚拟变量(定类变量)
      • regress y x1 G1 G2 G3 G4
  • 结果分析

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JvvgaXYh-1692215418654)(media/16921742285760/16921809215912.jpg)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1r8mMi44-1692215418654)(media/16921742285760/16921818296992.jpg)]
P值小于0.05, 说明模型在95%的水平下拒绝原假设,通过了联合显著性检验,说明模型是合理的。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OraqDFUn-1692215418655)(media/16921742285760/16921809359312.jpg)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0iMtwXmo-1692215418656)(media/16921742285760/16921818370769.jpg)]
先看哪些值是显著的,选择置信水平,然后选择变量,开始分析。
选择置信水平为90%,这里有两个变量是显著的,团购价在其他变量不变的情况下,每增加一元,评价量减小-29.77。控制其他变量不变的情况下,分类为羊奶粉的变量比分类为牛奶粉的评价量高14894.

  • 把回归结果保存到word中

    • est store m1
    • reg2docx m1 using m1.docx, replace
    • // *** p<0.01 ** p<0.05 * p<0.1
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tyVdON0T-1692215418656)(media/16921742285760/16921824817070.jpg)]
    • 加上右下角的标记
  • excel数据透视图会了,数据处理能超过大部分人

  • 回归分为解释型回归和预测型回归。

    • 预测型回归一般才会更看重R^2。
    • 解释型回归更多的关注模型整体显著性以及自变量的统计显著性和经济意义显著性即可。
  • 为了更为精准的研究影响评价量的重要因素(去除量纲的影响),我们可考虑使用标准化回归系数。

  • 对数据进行标准化,就是将原始数据减去它的均数后,再除以该变量的标准差,计算得到新的变量值,新变量构成的回归方程称为标准化回归方程,回归后相应可得到标准化回归系数。

  • 标准化系数的绝对值越大,说明对因变量的影响就越大(只关注显著的回归系数哦)

  • 回归标准化后得到的系数得到影响程度,不标准化得到的系数才能拿来预测。

  • 标准化回归的命令

    • regress y x1 x2 … xk, beta
    • 系数是最后一列
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S1WGFZYK-1692215418656)(media/16921742285760/16921833650579.jpg)]
  • 结果阅读:在显著的前提下,绝对值要大

  • 归一化后算得的系数会不好解释

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gQBRMqSe-1692215443131)(https://cdn.jsdelivr.net/gh/jixiuy/clouding/image-20230817034835596.png)]

这篇文章还没有配置图层利用 PicGo+Typora+Github文章来源地址https://www.toymoban.com/news/detail-654635.html

到了这里,关于数学建模-多元线性回归笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模—多元线性回归分析(+lasso回归的操作)

    定义:回归分析是数据分析中最基础也是最重要的分析工具,绝大多数的数据分析问题,都可以使用回归的思想来解决。回归分析的人数就是,通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。 常见的回归分析有五类:线性回归

    2024年02月13日
    浏览(37)
  • 【数学建模】多元线性回归(Python&Matlab代码实现)

    目录 1 概述 2 算例1 2.1 算例 2.2 Python代码实现  2.3 结果 3 算例2  3.1 算例 3.2 Python代码 3.3 结果 4 算例3 4.1 算例 4.2 Python代码 4.3 结果 5 算例4——Matlab代码实现 5.1 算例 5.2 Matlab代码实现 5.3 结果  6 写在最后 一元线性回归模型研究的是一个因变量与一个自变量之间呈直线趋势的

    2023年04月15日
    浏览(48)
  • 【数学建模笔记】【第七讲】多元线性回归分析(二):虚拟变量的设置以及交互项的解释,以及基于Stata的普通回归与标准化回归分析实例

    温馨提示: 本文共有9683字,阅读并理解全文需要半小时左右 书接上文,上文谈到内生性的解决之后,我们对回归问题的探究还没有完。 比如下面这个问题: 我们说线性回归他的表达式可以是广义的,可以含有二次项,可以含有对数项,那么含有对数项的模型中的β怎么解释

    2023年04月25日
    浏览(55)
  • 数学建模【基于清风】:相关系数法与多元线性回归

    个人理解为:如果当X增加时,Y趋向于减少,斯皮尔曼,皮尔逊相关系数则为负。斯皮尔曼,皮尔逊相关系数为零表明当X增加时Y没有任何趋向性。当X和Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。 如 但是,对于相关系数来说,相关系数的大小与其

    2024年02月08日
    浏览(58)
  • 数学建模常用模型(五):多元回归模型

    由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型。所以在遇到有些无法用机理分析建立数学模型的时候,通常采取搜集大量数据的办法,基于对数据的统计分析去建立模型,其中用途最为广泛的一类随

    2024年02月13日
    浏览(44)
  • 数学建模-线性回归

    回归分析: 通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。 本次主要学习线性回归。(划分依据是因变量Y的类型) ps. other 0-1回归,定序回归,计数回归,生存回归 a. : 相关性 , Y , X 相关性 != 因果性 Y 是需

    2023年04月09日
    浏览(47)
  • 数学建模matlab实现一元线性回归

            一元线性回归是统计学中用于建立一个自变量(或称为解释变量、预测变量)和一个因变量(或称为响应变量、被预测变量)之间的线性关系的回归模型。它假设两个变量之间存在一个直线关系,通过拟合这条直线,可以用自变量的值来预测因变量的值。     

    2024年01月21日
    浏览(51)
  • 数学建模-python递归、lingo解多元一次方程

    在了解如何用python、lingo解多元一次方程问题之前我们先了解什么是递归,因为python解多元一次方程问题是递归算法的一个经典算法习题,也是python解多元一次方程问题用到的主要算法。 简单说程序调用自身的编程技巧叫递归。递归的思想是把一个大型复杂问题层层转化为一

    2024年01月25日
    浏览(50)
  • 2023年数学建模:逻辑回归在数学建模中的应用

    目录 引言 逻辑回归原理 1. 数学原理 2. 直观解释

    2024年02月09日
    浏览(42)
  • 数学建模学习:岭回归和lasso回归

    线性回归 在多元线性回归模型中,估计回归系数使用的是OLS,并在最后讨论异方差和多重共线性对模型的影响。事实上,回归中自变量的选择大有门道,变量过多可能会导致多重共线性问题导致回归系数不显著,甚至造成OLS估计失效。 岭回归和lasso回归在OLS回归模型的损失函

    2024年02月08日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包