GPT法律领域

这篇具有很好参考价值的文章主要介绍了GPT法律领域。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

法律领域

LaWGPT

Github: https://github.com/pengxiao-song/LaWGPT

  • 简介:基于中文法律知识的大语言模型。

  • 数据:基于中文裁判文书网公开法律文书数据、司法考试数据等数据集展开,利用Stanford_alpaca、self-instruct方式生成对话问答数据,利用知识引导的数据生成,引入ChatGPT清洗数据,辅助构造高质量数据集。

  • 训练方法:(1)Legal-Base-7B模型:法律基座模型,使用50w中文裁判文书数据二次预训练。(2)LaWGPT-7B-beta1.0模型:法律对话模型,构造30w高质量法律问答数据集基于Legal-Base-7B指令精调。(3)LaWGPT-7B-alpha模型:在Chinese-LLaMA-7B的基础上直接构造30w法律问答数据集指令精调。(4)LaWGPT-7B-beta1.1模型:法律对话模型,构造35w高质量法律问答数据集基于Chinese-alpaca-plus-7B指令精调。

ChatLaw

Github: https://github.com/PKU-YuanGroup/ChatLaw

  • 简介:中文法律大模型

  • 数据:主要由论坛、新闻、法条、司法解释、法律咨询、法考题、判决文书组成,随后经过清洗、数据增强等来构造对话数据。

  • 训练方法:(1)ChatLaw-13B:基于姜子牙Ziya-LLaMA-13B-v1模型采用Lora方式训练而来。(2)ChatLaw-33B:基于Anima-33B采用Lora方式训练而来。

LexiLaw

Github: https://github.com/CSHaitao/LexiLaw

  • 简介:中文法律大模型

  • 数据:BELLE-1.5M通用数据、LawGPT项目中52k单轮问答数据和92k带有法律依据的情景问答数据、Lawyer LLaMA项目中法考数据和法律指令微调数据、华律网20k高质量问答数据、百度知道收集的36k条法律问答数据、法律法规、法律参考书籍、法律文书。

  • 训练方法:基于ChatGLM-6B模型,采用Freeze、Lora、P-Tuning-V2三种方法进行模型训练。

LAW-GPT

Github: https://github.com/LiuHC0428/LAW-GPT

  • 简介:中文法律大模型(獬豸)

  • 数据:现有的法律问答数据集和基于法条和真实案例指导的self-Instruct构建的高质量法律文本问答数据。

  • 训练方法:基于ChatGLM-6B,采用Lora&16bit方法进行模型训练。

lawyer-llama

Github: https://github.com/AndrewZhe/lawyer-llama

  • 简介:中文法律LLaMA

  • 数据:法考数据7k、法律咨询数据14k

  • 训练方法:以Chinese-LLaMA-13B为底座,未经过法律语料continual training,使用通用instruction和法律instruction进行SFT。文章来源地址https://www.toymoban.com/news/detail-654751.html

到了这里,关于GPT法律领域的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 遥感云大数据在灾害、水体与湿地领域及GPT模型应用

    近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨

    2024年02月06日
    浏览(48)
  • GPT在地学、GIS、气象、农业、生态、环境等领域应用教程

    详情点击链接:GPT在地学、GIS、气象、农业、生态、环境等领域应用教程 一 开启大模型 1 开启大模型 1)大模型的发展历程与最新功能 2)大模型的算法构架与底层逻辑 3)大模型的强大功能与应用场景 4)国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星

    2024年02月03日
    浏览(42)
  • Transformer、BERT和GPT 自然语言处理领域的重要模型

    Transformer、BERT和GPT都是自然语言处理领域的重要模型,它们之间有一些区别和联系。 区别: 架构:Transformer是一种基于自注意力机制的神经网络架构,用于编码输入序列和解码输出序列。BERT(Bidirectional Encoder Representations from Transformers)是基于Transformer架构的双向编码模型,

    2024年03月09日
    浏览(54)
  • GPT-4API全面开放,一分钟了解AIGC领域最新动态

    一分钟速览新闻点! 1.腾讯汤道生:行业大模型是企业拥抱AI的更优路径 2.WPSAI正式定名,官网同步上线 3.科大讯飞胡国平:10月24日发布通用大模型,全面对标ChatGPT,中文上全面超越 4.中国移动将发布“九天”1+N大模型,中移研究院首席科学家冯俊兰带队 5.GPT-4API全面开放使

    2024年02月15日
    浏览(44)
  • 遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型

    详情点击链接:遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型 第一: 基础 一: 平台及基础 开发平台 ·GEE平台及典型应用案例; ·GEE开发环境及常用数据资源; ·ChatGPT、文心一言等GPT模型 ·JavaScript基础; ·GEE遥感云重要概念与典型数据分析流程;     ·G

    2024年02月12日
    浏览(52)
  • 【GPT模型】遥感云大数据在灾害、水体与湿地领域中的应用

    近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨

    2024年02月15日
    浏览(41)
  • AI大语言模型GPT & R 生态环境领域数据统计分析

      自2022年GPT(Generative Pre-trained Transformer)大语言模型的发布以来,它以其卓越的自然语言处理能力和广泛的应用潜力,在学术界和工业界掀起了一场革命。在短短一年多的时间里,GPT已经在多个领域展现出其独特的价值,特别是在数据统计分析领域。GPT的介入为数据处理、

    2024年03月14日
    浏览(44)
  • 遥感云大数据在灾害、水体与湿地领域典型案 例实践及 GPT 模型应用

      近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了

    2024年02月08日
    浏览(41)
  • GPT模型应用及遥感云大数据在灾害、水体与湿地领域典型案例展示

     GPT GPT的全称,是Generative Pre-Trained Transformer(生成式预训练Transformer模型)是一种基于互联网的、可用数据来训练的、文本生成的深度学习模型。 GPT与专注于下围棋或机器翻译等某一个具体任务的“小模型”不同,AI大模型更像人类的大脑。它兼具“大规模”和“预训练”两

    2024年02月11日
    浏览(45)
  • 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用

    近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨

    2024年02月06日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包