数据生成 | MATLAB实现WGAN生成对抗网络数据生成

这篇具有很好参考价值的文章主要介绍了数据生成 | MATLAB实现WGAN生成对抗网络数据生成。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

生成效果

数据生成 | MATLAB实现WGAN生成对抗网络数据生成,生成对抗网络,数据生成,WGAN

数据生成 | MATLAB实现WGAN生成对抗网络数据生成,生成对抗网络,数据生成,WGAN

基本描述

1.WGAN生成对抗网络,数据生成,样本生成程序,MATLAB程序;
2.适用于MATLAB 2020版及以上版本;
3.基于Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network,WGAN)的数据生成模型引入了梯度惩罚(Gradient Penalty)来改善训练的稳定性和生成样本的质量。WGAN旨在解决原始生成对抗网络(GAN)中的训练不稳定性和模式崩溃等问题。基于Wasserstein生成对抗网络梯度惩罚的数据生成模型在一些应用中表现出较好的性能和稳定性,帮助解决了传统GAN中的一些问题,如模式崩溃和训练不稳定等。它已经被广泛应用于图像生成、数据合成等领域。;
4.数据扩充:对于数据不足的情况,WGAN梯度惩罚可以用于合成新的数据样本,用于模型训练,如自然语言处理中的文本生成。。
5.数据增强:在训练深度学习模型时,可以使用WGAN梯度惩罚合成额外的训练样本,提高模型的鲁棒性和泛化能力。
6.使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WGAN生成对抗网络数据生成

lgraphG = layerGraph(layersG);
dlnetG  = dlnetwork(lgraphG);

%% 参数设置
miniBatchSize = 64;                % 批大小
numIterationsG = 5000;             % 生成器迭代次数
numIterationsDPerG = 5;            % 生成器迭代5次,判别器迭代1次
lambda = 10;                       % 中间插值的参数
learnRateD = 2e-4;                 % 判别器学习率
learnRateG = 1e-3;                 % 生成器学习率
gradientDecayFactor = 0;           % 梯度衰减因子
squaredGradientDecayFactor = 0.9;  % 平方梯度衰减因子
executionEnvironment = "auto";

%% 初始化 Adam 的参数
trailingAvgD = [];
trailingAvgSqD = [];
trailingAvgG = [];
trailingAvgSqG = [];

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229文章来源地址https://www.toymoban.com/news/detail-654818.html

到了这里,关于数据生成 | MATLAB实现WGAN生成对抗网络数据生成的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包