STM32速成笔记—ADC

这篇具有很好参考价值的文章主要介绍了STM32速成笔记—ADC。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


🎀 文章作者:二土电子

🌸 关注文末公众号获取其他资料和工程文件!

🐸 期待大家一起学习交流!


一、什么是ADC

ADC(Analogto-Digital Converter)模拟数字转换器,是将模拟信号转换成数字信号的一种外设。比如某一个电阻两端的是一个模拟信号,单片机无法直接采集,此时需要ADC先将短租两端的电压这个模拟信号转化成数字信号,单片机才能够进行处理。

二、ADC的用途

ADC具有将模拟信号转换成数字信号的能力,比如将模拟的电压转换成数字信号,单片机进行处理。可以用作温度监测或者电流监测等方面,用途极广。

三、STM32F103ZET6的ADC

根据中文参考手册介绍,STM32F103ZET6单片机有3个12位ADC,共有18个通道,可测量16个外部和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。ADC的输入时钟不得超过14MHz,它是由PCLK2经分频产生。

3.1 ADC通道对应引脚

STM32F103ZET6的ADC各通道对应IO如下

通道 ADC1 ADC2 ADC3
通道0 PA0 PA0 PA0
通道1 PA1 PA1 PA1
通道2 PA2 PA2 PA2
通道3 PA3 PA3 PA3
通道4 PA4 PA4 PA4
通道5 PA5 PA5 PA5
通道6 PA6 PA6 PA6
通道7 PA7 PA7 PA7
通道8 PB0 PB0 PB0
通道9 PB1 PB1 PB1
通道10 PC0 PC0 PC0
通道11 PC1 PC1 PC1
通道12 PC2 PC2 PC2
通道13 PC3 PC3 PC3
通道14 PC4 PC4 PC4
通道15 PC5 PC5 PC5
通道10 内部温度传感器
通道10 内部参考电压VREF

3.2ADC时钟

ADC输入时钟ADC_CLK由APB2分频产生,最大值是14MHz。库函数提供了设置分频因子的函数

void RCC_ADCCLKConfig(uint32_t RCC_PCLK2)

可选的分频因子有

#define RCC_PCLK2_Div2                   ((uint32_t)0x00000000)
#define RCC_PCLK2_Div4                   ((uint32_t)0x00004000)
#define RCC_PCLK2_Div6                   ((uint32_t)0x00008000)
#define RCC_PCLK2_Div8                   ((uint32_t)0x0000C000)

APB2总线时钟为72MHz,而ADC的最大工作频率为14MHz,所以,分频因子一般设置为6,这样ADC的输入时钟频率为12MHz。

3.3 ADC工作模式

根据中文参考手册介绍,STM32F1的ADC有三种工作模式

  • 单次转换模式
    单次转换模式下,ADC只执行一次转换。该模式既可通过设置ADC_CR2寄存器的ADON位(只适用于规则通道)启动也可通过外部触发启动(适用于规则通道或注入通道),这时CONT位为0。
  • 连续转换模式
    在连续转换模式中,当前面ADC转换一结束马上就启动另一次转换。此模式可通过外部触发启动或通过设置ADC_CR2寄存器上的ADON位启动,此时CONT位是1。
  • 扫描模式

3.4 ADC转换时间

ADC的总转换时间与时钟频率有关,总转换时间 = 采样时间 + 12.5个周期。其中,采样时间最短为1.5个周期,也就是最短转换时间为14个时钟周期。使用软件触发时,可选择的采样时间如下

#define ADC_SampleTime_1Cycles5                    ((uint8_t)0x00)
#define ADC_SampleTime_7Cycles5                    ((uint8_t)0x01)
#define ADC_SampleTime_13Cycles5                   ((uint8_t)0x02)
#define ADC_SampleTime_28Cycles5                   ((uint8_t)0x03)
#define ADC_SampleTime_41Cycles5                   ((uint8_t)0x04)
#define ADC_SampleTime_55Cycles5                   ((uint8_t)0x05)
#define ADC_SampleTime_71Cycles5                   ((uint8_t)0x06)
#define ADC_SampleTime_239Cycles5                  ((uint8_t)0x07)

3.5 ADC校准

使能ADC后,需要对ADC进行校准。使用库函数开发时,提供了ADC校准的函数

	ADC_ResetCalibration(ADC1);//重置指定的ADC的校准寄存器
	while(ADC_GetResetCalibrationStatus(ADC1));//获取ADC重置校准寄存器的状态
	
	ADC_StartCalibration(ADC1);//开始指定ADC的校准状态
	while(ADC_GetCalibrationStatus(ADC1));//获取指定ADC的校准程序

3.6 ADC转换结果与实际电压的换算

获取到的AD转换结果并不是实际电压,如果想要得到实际电压,需要经过换算。上面介绍了,STM32的ADC为12位,也就是AD值取值范围为0~4095。采集电压范围为0到3.3V。AD值与实际电压之间存在比例关系。

实际电压 = (AD值 / 4095) * 3.3。单位为伏特(V)

四、ADC配置步骤

  • 使能GPIO时钟和ADC时钟,设置引脚为模拟输入
  • 设置ADC的分频因子
  • 初始化ADC参数,包括ADC工作模式,规则序列等
  • 使能ADC并校准
  • 触发AD转换,读取AD转换值

五、ADC配置程序

5.1 ADC初始化程序

这里以配置ADC1的通道1为例,给出ADC的配置例程,分频因子设置为6,单次转换模式,软件触发。

/*
 *==============================================================================
 *函数名称:ADC1_Init
 *函数功能:初始化ADCx
 *输入参数:无
 *返回值:无
 *备  注:无
 *==============================================================================
 */
void ADC1_Init(void)
{
	// 结构体定义
	GPIO_InitTypeDef GPIO_InitStructure;
	ADC_InitTypeDef ADC_InitStructure;
	
	// 开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1,ENABLE);
	
	// 设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);
	
	// GPIO配置
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_1;   //ADC1通道1
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN;   // 模拟输入
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	// ADC参数配置
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;   // 独立模式
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;   // 非扫描模式	
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;   // 关闭连续转换
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;   // 禁止触发检测,使用软件触发
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;   // 右对齐	
	ADC_InitStructure.ADC_NbrOfChannel = 1;   // 1个转换在规则序列中 也就是只转换规则序列1 
	ADC_Init(ADC1, &ADC_InitStructure);   // ADC初始化
	
	ADC_Cmd(ADC1, ENABLE);   // 开启AD转换器
	
	// ADC校准
	ADC_ResetCalibration(ADC1);   // 重置指定的ADC的校准寄存器
	while(ADC_GetResetCalibrationStatus(ADC1));   // 获取ADC重置校准寄存器的状态
	
	ADC_StartCalibration(ADC1);   // 开始指定ADC的校准状态
	while(ADC_GetCalibrationStatus(ADC1));   // 获取指定ADC的校准程序

	ADC_SoftwareStartConvCmd(ADC1, ENABLE);   // 使能或者失能指定的ADC的软件转换启动功能
}

5.2 软件触发AD转换

库函数开发,配置为软件触发时,可以通过下面的函数触发AD转换

void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)

5.3 读取AD转换结果

库函数提供了用于读取AD转换结果的函数

uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx)

这里给出另一个函数,用于软件触发AD转换并读取转换结果

/*
 *==============================================================================
 *函数名称:Get_ADC_Value
 *函数功能:读取某一规则通道AD值
 *输入参数:ch:规则通道ADC_Channel_x;times:读取次数
 *返回值:无
 *备  注:该函数配置好后,返回的结果是N次后的平均值
 *==============================================================================
 */
u16 Get_ADC_Value(u8 ch,u8 times)
{
	u32 temp_val = 0;
	u8 t;
	// 设置指定ADC的规则组通道,一个序列,采样时间
	// ADC1,ADC通道,239.5个周期,提高采样时间可以提高精确度
	ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5);			    
	
	for(t=0;t<times;t++)
	{
		ADC_SoftwareStartConvCmd(ADC1, ENABLE);   // 使能指定的ADC1的软件转换启动功能	
		while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));   // 等待转换结束
		temp_val+=ADC_GetConversionValue(ADC1);
		delay_ms(5);
	}
	return temp_val/times;
} 

六、实战项目

用ADC1的通道1采集某电阻两端电压(由于普中核心板没有可供采集的电阻,可以直接将采集引脚接到3.3V查看一下结果),将结果通过串口打印到电脑。其中关于串口的配置就不再做介绍,给出ADC的配置和main函数。

6.1 ADC初始化

/*
 *==============================================================================
 *函数名称:ADC1_Init
 *函数功能:初始化ADCx
 *输入参数:无
 *返回值:无
 *备  注:无
 *==============================================================================
 */
void ADC1_Init(void)
{
	// 结构体定义
	GPIO_InitTypeDef GPIO_InitStructure;
	ADC_InitTypeDef ADC_InitStructure;
	
	// 开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1,ENABLE);
	
	// 设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);
	
	// GPIO配置
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_1;   //ADC1通道1
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN;   // 模拟输入
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	// ADC参数配置
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;   // 独立模式
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;   // 非扫描模式	
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;   // 关闭连续转换
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;   // 禁止触发检测,使用软件触发
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;   // 右对齐	
	ADC_InitStructure.ADC_NbrOfChannel = 1;   // 1个转换在规则序列中 也就是只转换规则序列1 
	ADC_Init(ADC1, &ADC_InitStructure);   // ADC初始化
	
	ADC_Cmd(ADC1, ENABLE);   // 开启AD转换器
	
	// ADC校准
	ADC_ResetCalibration(ADC1);   // 重置指定的ADC的校准寄存器
	while(ADC_GetResetCalibrationStatus(ADC1));   // 获取ADC重置校准寄存器的状态
	
	ADC_StartCalibration(ADC1);   // 开始指定ADC的校准状态
	while(ADC_GetCalibrationStatus(ADC1));   // 获取指定ADC的校准程序

	ADC_SoftwareStartConvCmd(ADC1, ENABLE);   // 使能或者失能指定的ADC的软件转换启动功能
}

6.2 main函数

u16 gAdcAdValue = 0;   // 存储AD值
float gAdcVol = 0;   // 实际电压值

int main(void)
{
	Med_Mcu_Iint();   // 系统初始化
	
	while(1)
  {
		gAdcAdValue = Get_ADC_Value (ADC_Channel_1,10);   // 获取转换结果
		gAdcVol = (gAdcAdValue / 0xFFF) * 3.3;   // 计算实际电压
		printf ("Vol=%.1f V\r\n",gAdcVol);   // 串口打印结果
		
		delay_ms (500);   // 防止打印过快
	}
}

七、拓展

7.1 定时器触发ADC采集

根据中文参考手册介绍,ADC可以通过定时器触发AD转换(只有PWM的上升沿可以触发AD转换)。触发方式有以下几种

  • TIM1_CH1 :定时器 1 的通道 1 的 PWM 触发
  • TIM1_CH2 : 定时器 2 的通道 2 的 PWM 触发
  • TIM1_CH3: 定时器 1 的通道 3 的 PWM 触发
  • TIM2_CH2 : 定时器 2 的通道 2 的 PWM 触发
  • TIM3_TRGO: 定时器 3 触发
  • TIM4_CH4 : 定时器 4 的通道 4 的 PWM 触发

stm32 adc,STM32速成笔记,stm32,单片机,笔记

这里以TIM4的通道4触发ADC采集为例,给出程序配置。

首先是定时器PWM的配置,不对引脚进行重映射。

/*
 *==============================================================================
 *函数名称:TIM4_CH4_PWM_Init
 *函数功能:初始化定时器4的PWM通道4
 *输入参数:per:自动重装载值;psc:预分频系数
 *返回值:无
 *备  注:无
 *==============================================================================
 */
void TIM4_CH4_PWM_Init (u16 per,u16 psc)
{
	// 结构体定义
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_OCInitTypeDef TIM_OCInitStructure;
	GPIO_InitTypeDef GPIO_InitStructure;
	
	// 开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);
	
	// 初始化GPIO
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;   // 复用推挽输出
	GPIO_Init(GPIOB,&GPIO_InitStructure);
	
	// 初始化定时器参数
	TIM_TimeBaseInitStructure.TIM_Period = per;   // 自动装载值
	TIM_TimeBaseInitStructure.TIM_Prescaler = psc;   // 分频系数
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;   // 设置向上计数模式
	TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStructure);	
	
	// 初始化PWM参数
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;   // 比较输出模式
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;   // 输出极性
	TIM_OCInitStructure.TIM_Pulse = 500;   // 脉冲宽度
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   // 输出使能
	TIM_OC4Init(TIM4,&TIM_OCInitStructure);   // 输出比较通道2初始化
	
	TIM_OC4PreloadConfig(TIM4,TIM_OCPreload_Enable);   // 使能TIMx在 CCR2 上的预装载寄存器
	TIM_ARRPreloadConfig(TIM4,ENABLE);   // 使能预装载寄存器
	
	TIM_Cmd(TIM4,ENABLE);   // 使能定时器
}

ADC配置程序如下,触发源选择TIM4的CH4,使能外部触发。

/*
 *==============================================================================
 *函数名称:ADC1_Init
 *函数功能:初始化ADCx
 *输入参数:无
 *返回值:无
 *备  注:无
 *==============================================================================
 */
void ADC1_Init(void)
{
	// 结构体定义
	GPIO_InitTypeDef GPIO_InitStructure;
	ADC_InitTypeDef ADC_InitStructure;
	
	// 开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1,ENABLE);
	
	// 设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);
	// 规则通道配置
	ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_239Cycles5);
	
	// GPIO配置
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_1;   //ADC1通道1
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN;   // 模拟输入
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	// ADC参数配置
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;   // 独立模式
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;   // 非扫描模式	
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;   // 关闭连续转换
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T4_CC4;   // TIM2通道2触发
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;   // 右对齐	
	ADC_InitStructure.ADC_NbrOfChannel = 1;   // 1个转换在规则序列中 也就是只转换规则序列1 
	ADC_Init(ADC1, &ADC_InitStructure);   // ADC初始化
	
	// 使能外部触发
	ADC_ExternalTrigConvCmd(ADC1, ENABLE);
	
	ADC_Cmd(ADC1, ENABLE);   // 开启AD转换器
	
	// ADC校准
	ADC_ResetCalibration(ADC1);   // 重置指定的ADC的校准寄存器
	while(ADC_GetResetCalibrationStatus(ADC1));   // 获取ADC重置校准寄存器的状态
	
	ADC_StartCalibration(ADC1);   // 开始指定ADC的校准状态
	while(ADC_GetCalibrationStatus(ADC1));   // 获取指定ADC的校准程序

	ADC_SoftwareStartConvCmd(ADC1, ENABLE);   // 使能或者失能指定的ADC的软件转换启动功能
}

main函数如下

u16 gAdcAdValue = 0;   // 存储AD值
float gAdcVol = 0;   // 实际电压值

int main(void)
{
	Med_Mcu_Iint();   // 系统初始化
	
	while(1)
  {
		gAdcAdValue = ADC_GetConversionValue (ADC1);   // 获取转换结果
		gAdcVol = (gAdcAdValue / 0xFFF) * 3.3;   // 计算实际电压
		printf ("Vol=%.1f V\r\n",gAdcVol);   // 串口打印结果
		
		delay_ms (500);   // 防止打印过快
	}
}

初始化定PWM时,程序为

TIM4_CH4_PWM_Init(1000,71);   // 初始化TIM4的通道4

分频系数为71 + 1,自动重装载值为1000,也就是1KHz的方波,也就是触发AD转换的频率为1KHz,与占空比无关。

7.2 ADC采集交流信号

ADC能够采集的电压范围是0~3.3V,也就是说负电压无法采集。比如,需要采集下图中的一个交流信号
stm32 adc,STM32速成笔记,stm32,单片机,笔记

其位于0以下的部分是无法采集的。因此,在利用STM32采集交流信号时,在交流信号输入ADC引脚前,给交流信号增加一个直流偏置,将交流信号的最低点抬升到0以上,之后再输入ADC引脚。

7.3 计算交流信号有效值

ADC可以用于电流监测,实时监测主线路中的电流。当然,硬件方面需要搭配电流互感线圈,通过采集互感线圈两端的电压,来监测主线路电流。由于一般都是交流信号,所以需要计算有效值。

根据我们所学的知识,计算交流信号有效值常用两种方法。一种是峰峰值除以根号2,另一种是计算均方根得到有效值。通常我们采用计算均方根的方法来计算有效值。因为如果用峰峰值除以根号2去计算有效值,峰峰值很容易不准确。如果在某一个时刻,由于环境干扰或者硬件问题,导致突然出现了一个很大的值,会导致计算结果与实际偏差较大。关于为什么计算均方根可以得到交流信号的有效值,这里就不做介绍了,只给出部分程序设计。由于博主目前身边没有合适的设备验证,因此仅供参考。

假设需要计算一个50Hz交流信号的的有效值,在其输入到ADC采集引脚之前,增加一个稳定的1.65V的偏置。ADC的采样频率为1KHz,也就是一个正弦波的周期可以采集20个点。假设采集到的AD值存储到一个数组中,计算有效值的程序设计如下

int gAdcAdValue[20];   // 存储采样结果AD值的数组
int gAdcValidValue = 0;   // 有效值

void Med_Adc_ValidValueCal (void)
{
	int tempVar = 0;   // 循环变量
	int squarSum = 0;   // 平方和
	
	// 求平方和
	for (tempVar = 0;tempVar < 20;tempVar ++)
	{
		// 减去直流偏置
		gAdcAdValue[tempVar] = gAdcAdValue[tempVar] - 2048;
		// 计算平方和
		squarSum = squarSum + gAdcAdValue[tempVar] * gAdcAdValue[tempVar];
	}
	
	// 求平均
	squarSum = squarSum / 20;
	
	// 开根号得到均方根(有效值)
	gAdcValidValue = sqrt (squarSum);
}

在进行程序设计时需要注意不要超出数据类型范围。在实际应用时肯定会存在误差,这里也简单介绍一下误差消除方法。目前用到的有两种方法,第一种是分段矫正,在不同的区间内,误差满足线性关系时可以使用。另一种是按比例矫正,这种方法常用于误差随着测量值的增大而增大的情况。在计算出有效值后,减去或者加上一定比例的计算值来做矫正。文章来源地址https://www.toymoban.com/news/detail-654965.html

到了这里,关于STM32速成笔记—ADC的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32单片机入门学习笔记——定时器TIM第一部分

    笔记整理自B站UP主 江科大自化协 教程 《STM32入门教程-2023持续更新中》 ,所用单片机也为教程推荐单片机。 第一部分:定时器基本定时的功能,定时器每隔这个时间产生一个中断,来实现每隔一个固定时间执行一段程序的目的,比如要做一个时钟、秒表或者使用一些程序算

    2024年02月03日
    浏览(51)
  • 洋桃电子STM32F407单片机入门教程笔记九:低功耗模式

      此文档作为对洋桃电子STM32F407单片机视频的整理,B站链接: 第28集)低功耗模式_哔哩哔哩_bilibili         在之前的程序里应用程序在while(1)主循环中反复执行,ARM内核以100%的功率工作。这样的设计简单稳定,内核全速运行的功耗也只有几十毫安,对于外接电源的设备

    2024年01月23日
    浏览(60)
  • 洋桃电子STM32F407单片机入门教程笔记一:RCC时钟设置

    此文档作为对洋桃电子STM32F407单片机视频的整理,B站链接:2023更新 STM32入门F4= STM32F407单片机入门教程=WIFI连接阿里云物联网+CubeMX+HAL库+TFT彩屏+杜洋主讲_哔哩哔哩_bilibili 由于单片机内部的时钟结构都是相互关联的,一个时钟源出发可以供给多个功能,类似于树根、树杆、树

    2024年02月04日
    浏览(45)
  • 【单片机学习笔记】Windows+Vscode+STM32F4+freeRTOS+FatFs gcc环境搭建

    为摒弃在接受keil邮件,研究了下gun编译,以STM32F407为例,简单记录 Git 选择对应版本直接安装即可https://git-scm.com/download/win make gcc ​ 1)将上述软件包放置于C盘根目录 2)添加环境变量 3)cmd命令行测试环境 分别输入 启动文件及LD文件 目录路径表示问题 字节对齐及指定位置存

    2024年02月07日
    浏览(54)
  • STM32单片机(一)STM32简介

    ❤️ 专栏简介:本专栏记录了从零学习单片机的过程,其中包括51单片机和STM32单片机两部分;建议先学习51单片机,其是STM32等高级单片机的基础;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 :适用于想要从零基础开始学习入门单片机,且有一定C语言基础的的童鞋

    2024年02月10日
    浏览(57)
  • STM32单片机(二)STM32环境搭建

    ❤️ 专栏简介:本专栏记录了从零学习单片机的过程,其中包括51单片机和STM32单片机两部分;建议先学习51单片机,其是STM32等高级单片机的基础;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 :适用于想要从零基础开始学习入门单片机,且有一定C语言基础的的童鞋

    2024年02月10日
    浏览(59)
  • STM32单片机开发-01 STM32介绍

    通过野火开发板学习单片机 从内核上分有Cortex-M0、M3、M4 和M7 F1 代表了基础型,基于Cortex-M3 内核,主频为72MHZ F4 代表了高性能,基于Cortex-M4 内核,主频180M。 数据手册:用于芯片选型和设计原理图 参考手册:用于编程时查阅 Icode总线 – 该总线讲M3内核的指令总线与闪存指令

    2024年01月21日
    浏览(57)
  • STM32单片机学习3--STM32控制键盘

    单片机型号:STM32F103C8T6 开发环境:Keil5 4种输入模式 上拉输入模式:在默认状态下(GPIO引脚无输入),读取得的GPIO引脚数据为1,高电平(与Vdd相连的为上拉电阻); 下拉输入模式:在默认状态下(GPIO引脚无输入),读取得的GPIO引脚数据为0,低电平(与Vss相连的为下拉电

    2024年02月10日
    浏览(55)
  • 【STM32】STM32单片机结构及部件原理

    STM32是目前比较常见并且多功能的单片机,要想学习STM32,首先要去了解它的基本构成部分以及各部分的原理。 单片机型号:正点原子STM32F103ZET6 目录 STM32内部结构总览图: 2.内部结构解析         1.内核 :STM32F103ZET6采用的是 ARM Cortex-M3 处理器,内核可以理解为单片机 处

    2023年04月08日
    浏览(46)
  • GD32单片机和STM32单片机的对比分析

    GD32单片机和STM32单片机都是基于Arm Cortex-M3/M4内核的32位通用微控制器,广泛应用于各种嵌入式系统和物联网领域。两者之间有很多相似之处,但也有一些不同之处,本文将从以下几个方面对比分析两者的特点、优势和开发成本。 GD32单片机采用的是二代的M3/M4内核,而STM32单片

    2024年02月16日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包