图分类,图机器学习最新进展

这篇具有很好参考价值的文章主要介绍了图分类,图机器学习最新进展。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图分类,图机器学习最新进展

1.Flat_Pooling图分类,图机器学习最新进展,图分类,图机器学习,图深度学习

Title Venue Task Code Dataset
DMLAP: Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localities Neural Networks 2022 1. Graph Classification None synthetic, OGB-molhiv, OGB-ppa, MCF-7 (TU dataset)
GraphTrans: Representing Long-Range Context for Graph Neural Networks with Global Attention 🌟 NIPS 2021 1. Graph Classification 1.PyTorch NCI1, NCI109, code2, molpcba
GMT: Accurate Learning of Graph Representations with Graph Multiset Pooling. 🌟 ICLR 2021 1. Graph Classification 2. Graph Reconstruction 3. Graph Generation 1.PyTorch 2.PyTorch-Geometric D&D, PROTEINS, MUTAG, IMDB-B, IMDB-M, COLLAB, OGB-MOLHIV, OGB-Tox21, OGB-ToxCast, OGB-BBBP, ZINC(Reconstruction), QM9(Generation)
QSGCNN: Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation TKDE 2021 1. Graph Classification None MUTAG, PTC, NCI1, PROTEINS, D&D, COLLAB, IMDB-B, IMDB-M, RED-B
DropGNN: DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks NIPS 2021 1. Graph Classification 2. Graph Regression PyTorch MUTAG, PTC, PROTEINS, IMDB-B, IMDB-M QM9(Regression)
SSRead: Learnable Structural Semantic Readout for Graph Classification ICDM 2021 1. Graph Classification PyTorch D&D, MUTAG, Mutagencity, NCI1,PROTEINS, IMDB-B, IMDB-M
FlowPool: Pooling Graph Representations with Wasserstein Gradient Flows ArXiv 2021 1. Graph Classification None BZR, COX2, PROTEINS
DKEPool: Distribution Knowledge Embedding for Graph Pooling TKDE 2022 1. Graph Classification PyTorch IMDB-B, IMDB-M, MUTAG, PTC, NCI1, PROTEINS, REDDIT-BINARY, OGB-MOLHIV, OGB-BBB
FusionPooling: Hybrid Low-order and Higher-order Graph Convolutional Networks Computational Intelligence and Neuroscience 2020 1. Text Classification 2. node classification None 20-Newsgroups // Cora, CiteSeer, PubMed
SOPool: Second-Order Pooling for Graph Neural Networks TPAMI 2020 1. Graph Classification None MUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
StructSa: Structured self-attention architecture for graph-level representation learning Pattern Recognition 2020 1. Graph Classification None MUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
NAS: Graph Neural Network Architecture Search for Molecular Property Prediction ICBD 2020 1. Graph Regression None QM7, QM8, QM9, ESOL, FreeSolv, Lipophilicity
Neural Pooling for Graph Neural Networks ArXiv 2020 1. Graph Classification None MUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI-5K
GFN: Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification ArXiv 2019 1. Graph Classification PyTorch MUTAG, PROTEINS, D&D, NCI1, ENZYMES, IMDB-B, IMDB-M, RDT-B. REDDTIT-Multi-5K, REDDIT-Multi-12K, COLLAB
GIN: How Powerful are Graph Neural Networks? ICLR 2019 1. Graph Classification PyTorch MUTAG, PROTEINS, PTC, NCI1, IMDB-B, IMDB-M, RDT-B. RDT-Multi-5K, COLLAB
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective WWW 2019 1. Graph Classification PyTorch Tencent
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification KDD 2019 1. Graph Classification TensorFlow MUTAG, PTC PROTEINS,ENZYMES
MSNAPool: Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity IJCAI 2019 1. Graph Classification 2. Graph similarity ranking 3. Graph visualization TensorFlow PTC, IMDB-B, WEB, NCI109, REDDIT-Multi-12K
PiNet: Attention Pooling for Graph Classification NIPS-W 2019 1. Graph Classification Code MUTAG, PTC, NCI1, NCI109, PROTEINS, Erdõs-Rényi graphs
DAGCN: Dual Attention Graph Convolutional Networks IJCNN 2019 1. Graph Classification PyTorch NCI1, D&D, ENZYMES, NCI109, PROTEINS, PTC
DeepSet: Universal Readout for Graph Convolutional Neural Networks IJCNN 2019 1. Graph Classification Code MUTAG, PTC, NCI1, PROTEINS,D&D
SortPool: An End-to-End Deep Learning Architecture for Graph Classification AAAI 2018 1. Graph Classification 1.PyTorch-Geometric, 2.Matlab, 3.PyTorch 4.Spektral MUTAG, PTC, NCI1 PROTEINS, D&D
Set2set: Order Matters: Sequence to Sequence for Sets ICLR 2016 - PyTorch-Geometric -
GatedPool: Gated Graph Sequence Neural Networks ICLR 2016 - PyTorch-Geometric -
DCNN: Diffusion-Convolutional Neural Networks NIPS 2016 1. Graph Classification Theano NCI1, NCI109, MUTAG, PCI, ENZYMES

Hierarchical_Pooling - Node_Clustering_Pooling

Title Venue Task Code Dataset
Maximal Independent Vertex Set Applied to Graph Pooling CIKM 2022 1. Graph Classification None PROTEINS, NCI1, D&D, ENZYMES
Higher-order Clustering and Pooling for Graph Neural Networks CIKM 2022 1. Graph Classification 2. Node Clustering 1.PyTorch PROTEINS, NCI1, D&D, MUTAGEN., Reddit-B, Cox2-MD, ER-MD, b-hard // Cora, PubMed, DBLP, Coauthor CS ,Amazon Photo, Amazon PC, Polblogs, Eu-email
Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization CIKM 2022 1. Graph Classification None MUTAG, PROTEINS, PTC, HIV, IMDB-B, IMDB-M
Structural Entropy Guided Graph Hierarchical Pooling ICML 2022 1. Graph Classification 2. Node Classification 3. Graph Reconstruction 1. PyTorch MUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M // Cora, Citeseer, Pubmed // synthetic datasets (grid and circle)
HGCN:Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport AAAI 2021 1. Graph Classification 1. PyTorch MUTAG, PROTEINS, D&D, NCI109,IMDB-B, IMDB-M
Hierarchical Graph Representation Learning with Local Capsule Pooling MMAsia 2021 1. Graph Classification 2. Graph Reconstruction 1. PyTorch MUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M //synthetic datasets (grid and circle)
HGCN:Hierarchical Graph Capsule Network AAAI 2021 1. Graph Classification 1. PyTorch MUTAG, NCI1, PROTEINS, D&D, ENZYMES, PTC, NCI109,IMDB-B, IMDB-M, Reddit-BINARY
HAP: Hierarchical Adaptive Pooling by Capturing High-order Dependency for Graph Representation Learning TKDE 2021 1. Graph Classification 2. Graph Matching 3. Graph Similarity Learning None IMDB-B, IMDB-M, COLLAB, MUTAG, PROTEINS, PTC // synthetic datasets (graph matching) // AIDS, LINUX (graph similarity)
LCP: Hierarchical Graph Representation Learning with Local Capsule Pooling MMAsia 1. Graph Classification 2. Graph Reconstruction None D&D, PROTEINS, IMDB-B, IMDB-M, NCI1, NIC109
MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning ArXiv 2021 1.Graph Classification None D&D, ENZYMES, PROTEINS, NCI109, COLLAB, RDT-MULTI
HIBPool: Structure-Aware Hierarchical Graph Pooling using Information Bottleneck IJCNN 2021 1. Graph Classification 1.PyTorch ENZYMES, DD, PROTEINS, NCI1, NCI109,FRANKENSTEIN
MLC-GCN: Graph convolutional networks with multi-level coarsening for graph classification Knowledge-Based Systems 2020 1.Graph Classification None D&D, ENZYMES, MUTAG, PROTEINS,IMDB-BINARY, IMDB-MULTI, REDDIT- BINARY, REDDIT-MULTI-5K
DGM: Deep Graph Mapper: Seeing Graphs through the Neural Lens NIPS-W 2020 1. Graph Classification 2. Graph Visualisation 1.PyTorch D&D, PROTEINS, COLLAB, REDDIT-B
MuchGNN: Multi-Channel Graph Neural Networks IJCAI 2020 1. Graph Classification None PTC, DD, PROTEINS, COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-MULTI-12K
MinCutPool: Spectral Clustering with Graph Neural Networks for Graph Pooling ICML 2020 1. Graph Classification 2. Graph Regression 1.PyTorch-Geometric, 2.PyTorch D&D, PROTEINS, COLLAB, REDDIT-BINARY, Mutagenicity, QM9(regression)
HaarPool: Haar Graph Pooling ICML 2020 1. Graph Classification 2. Graph Regression 1.PyTorch MUTAG, PROTEINS, NCI1, NCI109, MUTAGEN, TRIANGLES, QM7(regression)
MemPool: Memory-Based Graph Networks ICLR 2020 1. Graph Classification 2. Graph Regression 1.PyTorch-Geometric, 2.PyTorch D&D, PROTEINS, COLLAB, REDDIT-BINARY,ENZYMES ESOL(reg), Lipophilicity(reg)
StructPool: Structured Graph Pooling via Conditional Random Fields ICLR 2020 1.Graph Classification 1. PyTorch ENZYMES, PTC, MUTAG, PROTEINS, COLLAB, IMDB-B, IMDB-M
MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph Representation and Learning ArXiv 2020 1.Graph Classification 2. Graph Regression None D&D, PROTEINS, MUTAG, ENZYMES // QM7 (regression) MUTA-GENICITY
ProxPool: Graph Pooling with Node Proximity for Hierarchical Representation Learning ArXiv 2020 1.Graph Classification None D&D, PROTEINS, NCI1, NCI109, MUTA-GENICITY
CliquePool: Clique pooling for graph classification ICLR-W 2019 1. Graph Classification None D&D PROTEINS, ENZYMES, COLLAB
NMF: A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks AIIA 2019 1. Graph Classification None D&D, PROTEINS, NCI1, ENZYMES, COLLAB
GRAHIES: Multi-Scale Graph Representation Learning with Latent Hierarchical Structure CogMI 2019 1. Node Classification None Cora, CiteSeer, PubMed
EigenPool: Graph Convolutional Networks with EigenPooling KDD 2019 1. Graph Classification 1.PyTorch D&D, PROTEINS, NCI1, NCI109, MUTAG,

参考链接:https://github.com/LiuChuang0059/graph-pooling-papers#flat_pooling
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9460814文章来源地址https://www.toymoban.com/news/detail-655072.html

到了这里,关于图分类,图机器学习最新进展的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于机器视觉的表面缺陷检测方法研究进展(2022最新)

    参考文献:基于机器视觉的表面缺陷检测方法研究进展-赵朗月 此文章仅为作者阅读学习记录,如有错误欢迎指正交流,如果对你有帮助还望点赞支持,谢谢! 给出了缺陷的定义、分类及缺陷检测的一般步骤,阐述传统方法、机器学习、深度学习,并比较和分析了优缺点。

    2024年02月08日
    浏览(34)
  • 大数据机器学习与深度学习——过拟合、欠拟合及机器学习算法分类

    针对模型的拟合,这里引入两个概念:过拟合,欠拟合。 过拟合:在机器学习任务中,我们通常将数据集分为两部分:训练集和测试集。训练集用于训练模型,而测试集则用于评估模型在未见过数据上的性能。过拟合就是指模型在训练集上表现较好,但在测试集上表现较差的

    2024年02月04日
    浏览(41)
  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(87)
  • 毕设 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月22日
    浏览(54)
  • 竞赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:

    2024年04月17日
    浏览(31)
  • 机器学习实战 | MNIST手写数字分类项目(深度学习初级)

    准备写个系列博客介绍机器学习实战中的部分公开项目。首先从初级项目开始。 本文为初级项目第二篇:利用MNIST数据集训练手写数字分类。 项目原网址为:Deep Learning Project – Handwritten Digit Recognition using Python。 第一篇为:机器学习实战 | emojify 使用Python创建自己的表情符号

    2024年02月15日
    浏览(48)
  • 特别策划|5G最新进展深度解析2022版—技术篇(71页附下载)

    关注公号回复“220323”下载71页PDF版报告原文 2021年初,「5G行业应用」曾推出《5G最新进展深度解析》系列,包括技术应用篇、国内市场篇和全球市场篇,得到读者朋友很大反响。 一年之后,我们再次推出 《5G最新进展深度解析2022版》 ,通过系统化的梳理和详实的数据,全

    2023年04月11日
    浏览(90)
  • 计算机竞赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:

    2024年02月11日
    浏览(50)
  • 使用 ArcGIS Pro 进行土地利用分类的机器学习和深度学习

    随着技术进步,尤其是地理信息系统 (GIS) 工具的进步,可以更有效地对土地利用进行分类。分类的使用可用于识别植被覆盖变化、非法采矿区和植被抑制区域,这些只是土地利用分类的众多示例中的一部分。 分类的一大困难是确定要解决的问题的级别。我分类的目的是什么

    2023年04月25日
    浏览(48)
  • 【论文阅读】异构联邦学习综述:最新进展与研究挑战

    这是关于一篇异构联邦学习的综述,希望能从这篇文章对联邦学习有一个大致的了解。作者从一开始就呈现了文章总体的思维导图,非常具有指引效果。 这是论文地址: Heterogeneous Federated Learning: State-of-the-art and Research Challenges 通俗的来说就是: 允许多个设备或数据源在不共

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包