实践教程|基于 pytorch 实现模型剪枝

这篇具有很好参考价值的文章主要介绍了实践教程|基于 pytorch 实现模型剪枝。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

PyTorch剪枝方法详解,附详细代码。

  • 一,剪枝分类

  • 1.1,非结构化剪枝

  • 1.2,结构化剪枝

  • 1.3,本地与全局修剪

  • 二,PyTorch 的剪枝

  • 2.1,pytorch 剪枝工作原理

  • 2.2,局部剪枝

  • 2.3,全局非结构化剪枝

  • 三,总结

  • 参考资料

一,剪枝分类

所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差(weigths/bias)的模型压缩技术。关于什么参数才是“不必要的”,这是一个目前依然在研究的领域。

1.1,非结构化剪枝

非结构化剪枝(Unstructured Puning)是指修剪参数的单个元素,比如全连接层中的单个权重、卷积层中的单个卷积核参数元素或者自定义层中的浮点数(scaling floats)。其重点在于,剪枝权重对象是随机的,没有特定结构,因此被称为非结构化剪枝

1.2,结构化剪枝

与非结构化剪枝相反,结构化剪枝会剪枝整个参数结构。比如,丢弃整行或整列的权重,或者在卷积层中丢弃整个过滤器(Filter)。

1.3,本地与全局修剪

剪枝可以在每层(局部)或多层/所有层(全局)上进行。

二,PyTorch 的剪枝

目前 PyTorch 框架支持的权重剪枝方法有:

  • Random: 简单地修剪随机参数。

  • Magnitude: 修剪权重最小的参数(例如它们的 L2 范数)

以上两种方法实现简单、计算容易,且可以在没有任何数据的情况下应用。

2.1,pytorch 剪枝工作原理

剪枝功能在 torch.nn.utils.prune 类中实现,代码在文件 torch/nn/utils/prune.py 中,主要剪枝类如下图所示。

实践教程|基于 pytorch 实现模型剪枝,学习笔记,pytorch,剪枝,人工智能

pytorch_pruning_api_file.png

剪枝原理是基于张量(Tensor)的掩码(Mask)实现。掩码是一个与张量形状相同的布尔类型的张量,掩码的值为 True 表示相应位置的权重需要保留,掩码的值为 False 表示相应位置的权重可以被删除。

Pytorch 将原始参数 <param> 复制到名为 <param>_original 的参数中,并创建一个缓冲区来存储剪枝掩码 <param>_mask。同时,其也会创建一个模块级的 forward_pre_hook 回调函数(在模型前向传播之前会被调用的回调函数),将剪枝掩码应用于原始权重。

pytorch 剪枝的 api 和教程比较混乱,我个人将做了如下表格,希望能将 api 和剪枝方法及分类总结好。

实践教程|基于 pytorch 实现模型剪枝,学习笔记,pytorch,剪枝,人工智能

pytorch_pruning_api

pytorch 中进行模型剪枝的工作流程如下:

  1. 选择剪枝方法(或者子类化 BasePruningMethod 实现自己的剪枝方法)。

  2. 指定剪枝模块和参数名称。

  3. 设置剪枝方法的参数,比如剪枝比例等。

2.2,局部剪枝

Pytorch 框架中的局部剪枝有非结构化和结构化剪枝两种类型,值得注意的是结构化剪枝只支持局部不支持全局。

2.2.1,局部非结构化剪枝

1,局部非结构化剪枝(Locall Unstructured Pruning)对应函数原型如下:

def random_unstructured(module, name, amount)  

1,函数功能:用于对权重参数张量进行非结构化剪枝。该方法会在张量中随机选择一些权重或连接进行剪枝,剪枝率由用户指定。2,函数参数定义:

  • module (nn.Module): 需要剪枝的网络层/模块,例如 nn.Conv2d() 和 nn.Linear()。

  • name (str): 要剪枝的参数名称,比如 “weight” 或 “bias”。

  • amount (int or float): 指定要剪枝的数量,如果是 0~1 之间的小数,则表示剪枝比例;如果是证书,则直接剪去参数的绝对数量。比如amount=0.2 ,表示将随机选择 20% 的元素进行剪枝。

3,下面是 random_unstructured 函数的使用示例。

import torch  
import torch.nn.utils.prune as prune  
conv = torch.nn.Conv2d(1, 1, 4)  
prune.random_unstructured(conv, name="weight", amount=0.5)  
conv.weight  
"""  
tensor([[[[-0.1703,  0.0000, -0.0000,  0.0690],  
          [ 0.1411,  0.0000, -0.0000, -0.1031],  
          [-0.0527,  0.0000,  0.0640,  0.1666],  
          [ 0.0000, -0.0000, -0.0000,  0.2281]]]], grad_fn=<MulBackward0>)  
"""  

可以看出输出的 conv 层中权重值有一半比例为 0

2.2.2,局部结构化剪枝

局部结构化剪枝(Locall Structured Pruning)有两种函数,对应函数原型如下:

def random_structured(module, name, amount, dim)  
def ln_structured(module, name, amount, n, dim, importance_scores=None)  

1,函数功能

与非结构化移除的是连接权重不同,结构化剪枝移除的是整个通道权重。

2,参数定义

与局部非结构化函数非常相似,唯一的区别是您必须定义 dim 参数(ln_structured 函数多了 n 参数)。

n 表示剪枝的范数,dim 表示剪枝的维度。

对于 torch.nn.Linear:

  • dim = 0:移除一个神经元。

  • dim = 1:移除与一个输入的所有连接。

对于 torch.nn.Conv2d:

  • dim = 0(Channels) : 通道 channels 剪枝/过滤器 filters 剪枝

  • dim = 1(Neurons): 二维卷积核 kernel 剪枝,即与输入通道相连接的 kernel

2.2.3,局部结构化剪枝示例代码

在写示例代码之前,我们先需要理解 Conv2d 函数参数、卷积核 shape、轴以及张量的关系。首先,Conv2d 函数原型如下;

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)  

而 pytorch 中常规卷积的卷积核权重 shape 都为(C_out, C_in, kernel_height, kernel_width),所以在代码中卷积层权重 shape[3, 2, 3, 3],dim = 0 对应的是 shape [3, 2, 3, 3] 中的 3。这里我们 dim 设定了哪个轴,那自然剪枝之后权重张量对应的轴机会发生变换。

实践教程|基于 pytorch 实现模型剪枝,学习笔记,pytorch,剪枝,人工智能

dim

理解了前面的关键概念,下面就可以实际使用了,dim=0 的示例如下所示。

conv = torch.nn.Conv2d(2, 3, 3)  
norm1 = torch.norm(conv.weight, p=1, dim=[1,2,3])  
print(norm1)  
"""  
tensor([1.9384, 2.3780, 1.8638], grad_fn=<NormBackward1>)  
"""  
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=0)  
print(conv.weight)  
"""  
tensor([[[[-0.0005,  0.1039,  0.0306],  
          [ 0.1233,  0.1517,  0.0628],  
          [ 0.1075, -0.0606,  0.1140]],  
  
         [[ 0.2263, -0.0199,  0.1275],  
          [-0.0455, -0.0639, -0.2153],  
          [ 0.1587, -0.1928,  0.1338]]],  
  
  
        [[[-0.2023,  0.0012,  0.1617],  
          [-0.1089,  0.2102, -0.2222],  
          [ 0.0645, -0.2333, -0.1211]],  
  
         [[ 0.2138, -0.0325,  0.0246],  
          [-0.0507,  0.1812, -0.2268],  
          [-0.1902,  0.0798,  0.0531]]],  
  
  
        [[[ 0.0000, -0.0000, -0.0000],  
          [ 0.0000, -0.0000, -0.0000],  
          [ 0.0000, -0.0000,  0.0000]],  
  
         [[ 0.0000,  0.0000,  0.0000],  
          [-0.0000,  0.0000,  0.0000],  
          [-0.0000, -0.0000, -0.0000]]]], grad_fn=<MulBackward0>)  
"""  

从运行结果可以明显看出,卷积层参数的最后一个通道参数张量被移除了(为 0 张量),其解释参见下图。

实践教程|基于 pytorch 实现模型剪枝,学习笔记,pytorch,剪枝,人工智能

dim_understand

dim = 1 的情况:

conv = torch.nn.Conv2d(2, 3, 3)  
norm1 = torch.norm(conv.weight, p=1, dim=[0, 2,3])  
print(norm1)  
"""  
tensor([3.1487, 3.9088], grad_fn=<NormBackward1>)  
"""  
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=1)  
print(conv.weight)  
"""  
tensor([[[[ 0.0000, -0.0000, -0.0000],  
          [-0.0000,  0.0000,  0.0000],  
          [-0.0000,  0.0000, -0.0000]],  
  
         [[-0.2140,  0.1038,  0.1660],  
          [ 0.1265, -0.1650, -0.2183],  
          [-0.0680,  0.2280,  0.2128]]],  
  
  
        [[[-0.0000,  0.0000,  0.0000],  
          [ 0.0000,  0.0000, -0.0000],  
          [-0.0000, -0.0000, -0.0000]],  
  
         [[-0.2087,  0.1275,  0.0228],  
          [-0.1888, -0.1345,  0.1826],  
          [-0.2312, -0.1456, -0.1085]]],  
  
  
        [[[-0.0000,  0.0000,  0.0000],  
          [ 0.0000, -0.0000,  0.0000],  
          [ 0.0000, -0.0000,  0.0000]],  
  
         [[-0.0891,  0.0946, -0.1724],  
          [-0.2068,  0.0823,  0.0272],  
          [-0.2256, -0.1260, -0.0323]]]], grad_fn=<MulBackward0>)  
"""  

很明显,对于 dim=1的维度,其第一个张量的 L2 范数更小,所以shape 为 [2, 3, 3] 的张量中,第一个 [3, 3] 张量参数会被移除(即张量为 0 矩阵) 。

2.3,全局非结构化剪枝

前文的 local 剪枝的对象是特定网络层,而 global 剪枝是将模型看作一个整体去移除指定比例(数量)的参数,同时 global 剪枝结果会导致模型中每层的稀疏比例是不一样的。

全局非结构化剪枝函数原型如下:

# v1.4.0 版本  
def global_unstructured(parameters, pruning_method, **kwargs)  
# v2.0.0-rc2版本  
def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs):  

1,函数功能

随机选择全局所有参数(包括权重和偏置)的一部分进行剪枝,而不管它们属于哪个层。

2,参数定义

  • parameters((Iterable of (module, name) tuples)): 修剪模型的参数列表,列表中的元素是 (module, name)。

  • pruning_method(function): 目前好像官方只支持 pruning_method=prune.L1Unstuctured,另外也可以是自己实现的非结构化剪枝方法函数。

  • importance_scores: 表示每个参数的重要性得分,如果为 None,则使用默认得分。

  • **kwargs: 表示传递给特定剪枝方法的额外参数。比如 amount 指定要剪枝的数量。

3,global_unstructured 函数的示例代码如下所示。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
  
class LeNet(nn.Module):  
    def __init__(self):  
        super(LeNet, self).__init__()  
        # 1 input image channel, 6 output channels, 3x3 square conv kernel  
        self.conv1 = nn.Conv2d(1, 6, 3)  
        self.conv2 = nn.Conv2d(6, 16, 3)  
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5x5 image dimension  
        self.fc2 = nn.Linear(120, 84)  
        self.fc3 = nn.Linear(84, 10)  
  
    def forward(self, x):  
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))  
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)  
        x = x.view(-1, int(x.nelement() / x.shape[0]))  
        x = F.relu(self.fc1(x))  
        x = F.relu(self.fc2(x))  
        x = self.fc3(x)  
        return x  
  
model = LeNet().to(device=device)  
  
model = LeNet()  
  
parameters_to_prune = (  
    (model.conv1, 'weight'),  
    (model.conv2, 'weight'),  
    (model.fc1, 'weight'),  
    (model.fc2, 'weight'),  
    (model.fc3, 'weight'),  
)  
  
prune.global_unstructured(  
    parameters_to_prune,  
    pruning_method=prune.L1Unstructured,  
    amount=0.2,  
)  
# 计算卷积层和整个模型的稀疏度  
# 其实调用的是 Tensor.numel 内内函数,返回输入张量中元素的总数  
print(  
    "Sparsity in conv1.weight: {:.2f}%".format(  
        100. * float(torch.sum(model.conv1.weight == 0))  
        / float(model.conv1.weight.nelement())  
    )  
)  
print(  
    "Global sparsity: {:.2f}%".format(  
        100. * float(  
            torch.sum(model.conv1.weight == 0)  
            + torch.sum(model.conv2.weight == 0)  
            + torch.sum(model.fc1.weight == 0)  
            + torch.sum(model.fc2.weight == 0)  
            + torch.sum(model.fc3.weight == 0)  
        )  
        / float(  
            model.conv1.weight.nelement()  
            + model.conv2.weight.nelement()  
            + model.fc1.weight.nelement()  
            + model.fc2.weight.nelement()  
            + model.fc3.weight.nelement()  
        )  
    )  
)  
# 程序运行结果  
"""  
Sparsity in conv1.weight: 3.70%  
Global sparsity: 20.00%  
"""  

运行结果表明,虽然模型整体(全局)的稀疏度是 20%,但每个网络层的稀疏度不一定是 20%。

三,总结

另外,pytorch 框架还提供了一些帮助函数:

  1. torch.nn.utils.prune.is_pruned(module): 判断模块 是否被剪枝。

  2. torch.nn.utils.prune.remove(module, name):用于将指定模块中指定参数上的剪枝操作移除,从而恢复该参数的原始形状和数值。

虽然 PyTorch 提供了内置剪枝 API ,也支持了一些非结构化和结构化剪枝方法,但是 API 比较混乱,对应文档描述也不清晰,所以后面我还会结合微软的开源 nni 工具来实现模型剪枝功能。

更多剪枝方法实践,可以参考这个 github 仓库:Model-Compression。

参考资料

  1. How to Prune Neural Networks with PyTorch

  2. PRUNING TUTORIAL

  3. PyTorch Pruning文章来源地址https://www.toymoban.com/news/detail-655965.html

到了这里,关于实践教程|基于 pytorch 实现模型剪枝的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture04反向传播

    lecture04反向传播 课程网址 Pytorch深度学习实践 部分课件内容: pytorch的机制是动态计算图, tensor里面既有data也有gradient

    2024年02月22日
    浏览(45)
  • 【深度学习】【pytorch】对卷积层置零卷积核进行真实剪枝

    最近需要对深度学习模型进行部署,因此需要对模型进行压缩,博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 深度学习剪枝(Pruning)是一种用于减少神经网络模型大小、减少计算量和提高推理效率的技术,通过去除神经网络中的冗余连接(权重)或节点(神经元

    2024年02月05日
    浏览(29)
  • 大模型学习与实践笔记(五)

    1. huggingface 镜像下载 sentence-transformers 开源词向量模型 2.下载 NLTK 相关资源 NLTK(自然语言工具包)是一个用于处理和分析人类语言数据的Python库。它提供了丰富的工具和资源,用于文本处理、语言学特征提取、语言模型训练、语义分析、情感分析等自然语言处理(NLP)任务。

    2024年01月23日
    浏览(27)
  • 大模型学习与实践笔记(九)

    使用 LMDeploy 以本地对话方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事 2.api 方式部署 运行 结果: 显存占用: 在使用命令,对lmdeploy 进行源码安装是时,报错 1.源码安装语句 2.报错语句: 3.解决方法 (1)在https://github.com/Dao-AILab/flash-attention/releases/ 下载 对应版本 的安装包

    2024年01月20日
    浏览(34)
  • 大模型学习与实践笔记(八)

    1.量化 2.持续批处理 3.Blocked k/v cache 4.有状态的推理 5.高性能cuda kernel

    2024年01月19日
    浏览(49)
  • 大模型学习与实践笔记(七)

    1.平台: Ubuntu + Anaconda + CUDA/CUDNN + 8GB nvidia显卡 2.安装 3.模型下载 4.数据集下载 数据集链接:https://huggingface.co/datasets/timdettmers/openassistant-guanaco/tree/main 5.拷贝模型配置文件到当前目录 本次实践拷贝文件为: xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 . 数据集与配置文件准备完成后的

    2024年01月17日
    浏览(45)
  • 《Python深度学习基于Pytorch》学习笔记

    有需要这本书的pdf资源的可以联系我~ 这本书不是偏向于非常详细的教你很多函数怎么用,更多的是交个基本使用,主要是后面的深度学习相关的内容。 1.Numpy提供两种基本的对象:ndarray(n维数组对象)(用于储存多维数据)和ufunc(通用函数对象,用于处理不同的数据)。

    2024年02月09日
    浏览(42)
  • PyTorch学习笔记(十三)——现有网络模型的使用及修改

     以分类模型的VGG为例   设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的 设置为 True 时,网络模型中的参数在数据集上是训练好的,能达到比较好的效果 CIFAR10 把数据分成了10类,而 vgg16 模型把数据分成了 1000 类,如何应用这个网络模型呢? 方法1:把最

    2024年02月12日
    浏览(42)
  • PyTorch深度学习快速入门教程【小土堆】 学习笔记

    PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】 anaconda 卸载环境 :conda uninstall -n yyy --all anaconda 安装路径:D:anaconda3 创建环境: conda create -n pytorch python=3.9 切换环境 : conda activate pytorch 查看目前已经安装的工具包:pip list Q 安装pytorch? 进入pytorch首页 下拉,http

    2024年02月07日
    浏览(56)
  • 【深度学习、工程实践】关系抽取Casrel实现(Pytorch版)

            关系抽取是自然语言处理中的一个基本任务。关系抽取通常用三元组(subject, relation, object)表示。但在关系抽取中往往会面临的关系三元组重叠问题。《A Novel Cascade Binary Tagging Framework for Relational Triple Extraction》提出的CASREL模型可以有效的处理重叠关系三元组问题。 论

    2023年04月17日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包