(五)kafka从入门到精通之topic介绍

这篇具有很好参考价值的文章主要介绍了(五)kafka从入门到精通之topic介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、kafka简介

Kafka是一个流行的分布式消息系统,它的核心是一个由多个节点组成的分布式集群。在Kafka中,数据被分割成多个小块,并通过一些复杂的算法在节点之间传递。这些小块被称为Kafka Topic。

2、topic知识

一个Topic是一组具有相同主题的消息。可以将Topic看作是一个数据仓库,在这个仓库中存储着具有相同主题的数据。比如,一个Topic可以存储所有关于“股票”的数据,另一个Topic可以存储所有关于“天气”的数据。

Kafka Topic的设计非常简单,但是它的功能却非常强大。Kafka Topics可以实现数据的发布、订阅和消费。在发布数据时,可以将数据放到一个Topic中,其他节点可以订阅这个Topic,并且获取其中的数据。在订阅数据时,可以将一个Topic的地址放到消费者的地址中,这样消费者就可以获取到该Topic中的数据。

Kafka Topis的数据结构非常特殊,它是一个由多个分区组成的集合。每个分区都是一个独立的数据流,并且可以使用不同的策略来处理数据的分配和复制。这种数据结构可以提高数据的可靠性和安全性,并且可以支持大规模的数据传输。

Kafka Topic的分区结构非常重要,它可以将数据分成多个部分,并且可以使用不同的策略来处理数据的分配和复制。每个分区都有一个唯一的标识符,叫做分区ID。可以使用不同的分区ID来创建多个分区,每个分区可以存储不同的数据。

3、简单使用

在使用Kafka Topics时,需要注意一些事项。首先,要创建一个Topic,并且指定该Topic的主题和相关参数。其次,要创建一些消费者,并且将它们添加到该Topic的订阅列表中。最后,当数据被发布到Topic中时,消费者会自动订阅这个Topic,并且获取其中的数据。

首先,您需要在项目中添加 Kafka 依赖项:

<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka-clients</artifactId>
  <version>2.8.0</version>
</dependency>

然后,您需要编写一个生产者,以将消息发布到指定的主题中:

在创建Topic时,可以指定该Topic的分区数和每个分区的大小。分区数表示要将数据分成多少个部分,每个部分可以使用不同的策略来处理数据的分配和复制。每个分区的大小表示每个部分可以存储多少数据。

package com.yinfeng.test.demo.kafka;

import lombok.SneakyThrows;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

/**
 * @author admin
 * @date 2023/7/2 19:02
 * @description
 */
public class KafkaProducerDemo {
    @SneakyThrows
    public static void main(String[] args) {
        Properties props = new Properties();
        // Kafka 集群地址
        props.put("bootstrap.servers", "localhost:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<>(props);

        // 发送3条消息
        for (int i = 0; i < 3; i++) {
            ProducerRecord<String, String> record1 = new ProducerRecord<>("test", "key"+i, "hello"+i);
            producer.send(record1, (metadata, exception) -> {
                System.out.println("消息发送成功 topic="+metadata.topic()+", msg=>" + record1.value());
            });
        }

        // kafka异步发送,延时等待执行完成
        Thread.sleep(5000);

    }
}

kafka的topic,kafka专区,java消息中间件笔记,kafka,分布式,大数据,云原生,java,原力计划

当数据被发布到Topic中时,可以将数据放到一个Topic中,其他节点可以订阅这个Topic,并且获取其中的数据。订阅一个Topic的过程可以用以下代码表示:

在消费Topic中的数据时,需要指定要消费的主题名称和消费者的地址。消费者的地址包括一个主机名和一个端口号,以及一个唯一的标识符,叫做消费者ID。消费者ID可以使用环境变量来设置,也可以在消费者的地址中直接指定。

package com.yinfeng.test.demo.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * @author admin
 * @date 2023/7/2 19:02
 * @description
 */
public class KafkaConsumerDemo {
    public static void main(String[] args) {
        Properties props = new Properties();
        // Kafka 集群地址
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "my_group");
        props.put("auto.offset.reset", "earliest");
        props.put("enable.auto.commit", "true");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props, new StringDeserializer(), new StringDeserializer());

        consumer.subscribe(Collections.singleton("test"));

        // 循环拉取消息
        while (true){
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> record : records) {
                System.out.println("Received message: " + record.value());
            }
        }

    }
}

kafka的topic,kafka专区,java消息中间件笔记,kafka,分布式,大数据,云原生,java,原力计划

在上面的代码中,我们首先创建了一个Kafka集群,然后创建了一个Topic,并且指定了该Topic的分区ID。接着,我们创建了一个Kafka集群,并且指定了该Topic的分区ID。接着,我们创建了一个消费者,并且将该消费者添加到该Topic的订阅列表中。最后,我们使用该消费者来消费该Topic中的数据。

在消费数据时,我们使用了Kafka提供的ConsumerRecords类来获取数据。我们首先使用该类的poll方法来获取一个消费者的数据,然后使用该类的其他方法来对数据进行处理。

在设置消费者的偏移量时,我们使用了Kafka提供的OffsetRequest类来向Kafka集群中提交消费者的偏移量。我们首先创建了一个OffsetRequest对象,然后使用该类的setOffset方法来将该对象设置为要求的偏移量。最后,我们调用该类的commitSync方法来提交该偏移量。不过由于我们设置自动提交,所以这步可以不用操作。

4、注意事项

在使用Kafka Topics时,还需要注意一些其他的事项。

例如,在创建Topic时,可以指定该Topic的备份策略,以确保数据的可靠性和安全性。备份策略包括多种不同的方法,如备份到本地文件、备份到数据库、备份到其他Kafka集群等。

另外,在使用Kafka Topics时,还可以使用Kafka提供的一些API和工具来对Topic进行操作和管理。例如,可以使用Kafka提供的AdminClient来管理Kafka集群中的所有Topic,可以使用Kafka提供的ConsumerGroupClient来管理Kafka集群中的所有ConsumerGroup,可以使用Kafka提供的KafkaConsumer来消费Kafka集群中的数据等。

总之,Kafka Topics是Kafka中非常重要的一个概念,它可以实现数据的发布、订阅和消费。在使用Kafka Topics时,需要注意一些事项,以确保数据的可靠性和安全性。文章来源地址https://www.toymoban.com/news/detail-656313.html

到了这里,关于(五)kafka从入门到精通之topic介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • kafka删除topic消息的三种方式

    kafka删除topic消息的三种方式 方法一:快速配置删除法(确保topic数据不要了) 1.kafka启动之前,在server.properties配置delete.topic.enable=true 2.执行命令bin/kafka-topics.sh --delete --topic test --zookeeper zk:2181或者使用kafka-manager集群管理工具删除 注意:如果kafka启动之前没有配置delete.topic.e

    2024年02月16日
    浏览(41)
  • Docker 安装kafka 并创建topic 进行消息通信

            Apache Kafka是一个分布式流处理平台,用于构建高性能、可扩展的实时数据流应用程序。本文将介绍如何使用Docker容器化技术来安装和配置Apache Kafka。 1、kafka安装必须先安装Zookpper 2、下载镜像 3、查看下载好的镜像 4、启动Kafka 5、查看是否创建好Kafka容器 6、进入到

    2024年03月15日
    浏览(44)
  • Kafka消息中间件(Kafka与MQTT区别)

    Kafka是一个分布式流处理平台,它可以快速地处理大量的数据流。Kafka的核心原理是基于 发布/订阅 模式的消息队列。Kafka允许多个生产者将数据写入主题(topic)中,同时也允许多个消费者从主题中读取数据。 Kafka重要原理 Kafka的设计原则之一是高可用性和可扩展性,因此它

    2024年02月03日
    浏览(48)
  • 消息中间件(二)——kafka

    在大数据中,会使用到大量的数据。面对这些海量的数据,我们一是需要做到能够 收集 这些数据,其次是要能够 分析和处理 这些海量数据。在此过程中,需要一套消息系统。 Kafka专门为分 布式高吞吐量 系统设计。作为一个消息代理的替代品,Kafka往往做的比其他消息中间

    2024年02月07日
    浏览(58)
  • 消息中间件 —— 初识Kafka

    1.1.1、为什么要有消息队列? 1.1.2、消息队列 消息 Message 网络中的两台计算机或者两个通讯设备之间传递的数据。例如说:文本、音乐、视频等内容。 队列 Queue 一种特殊的线性表(数据元素首尾相接),特殊之处在于只允许在首部删除元素和在尾部追加元素(FIFO)。 入队、出

    2024年02月13日
    浏览(53)
  • 【中间件】消息中间件之Kafka

    一、概念介绍 Apache Kafka是一个分布式流处理平台,用于构建实时数据管道和流应用。它可以处理网站、应用或其他来源产生的大量数据流,并能实时地将这些数据流传输到另一个系统或应用中进行处理。 核心概念: Topic(主题) :消息的分类,用于区分不同的业务消息。

    2024年01月20日
    浏览(67)
  • 消息中间件之Kafka(一)

    高性能的消息中间件,在大数据的业务场景下性能比较好,kafka本身不维护消息位点,而是交由Consumer来维护,消息可以重复消费,并且内部使用了零拷贝技术,性能比较好 Broker持久化消息时采用了MMAP的技术,Consumer拉取消息时使用的sendfile技术 Kafka是最初由Linkedin公司开发,

    2024年01月20日
    浏览(52)
  • 消息中间件之Kafka(二)

    1.1 为什么要对topic下数据进行分区存储? 1.commit log文件会受到所在机器的文件系统大小的限制,分区之后可以将不同的分区放在不同的机器上, 相当于对数据做了分布式存储,理论上一个topic可以处理任意数量的数据 2.提高并行度 1.2 如何在多个partition中保证顺序消费? 方案一

    2024年01月21日
    浏览(49)
  • kafka 基础概念、命令行操作(查看所有topic、创建topic、删除topic、查看某个Topic的详情、修改分区数、发送消息、消费消息、 查看消费者组 、更新消费者的偏移位置)

    kafka官网 Broker   一台kafka服务器就是一个broker,可容纳多个topic。一个集群由多个broker组成; Producer   生产者,即向kafka的broker-list发送消息的客户端; Consumer   消费者,即向kafka的broker-list订阅消息的客户端; Consumer Group   消费者组是 逻辑上的一个订阅者 ,由多个

    2024年02月01日
    浏览(61)
  • Kafka - 主题Topic与消费者消息Offset日志记录机制

    可以根据业务类型,分发到不同的Topic中,对于每一个Topic,下面可以有多个分区(Partition)日志文件: kafka 下的Topic的多个分区,每一个分区实质上就是一个队列,将接收到的消息暂时存储到队列中,根据配置以及消息消费情况来对队列消息删除。 可以这么来理解Topic,Partitio

    2024年02月03日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包