机器学习基础之《分类算法(3)—模型选择与调优》

这篇具有很好参考价值的文章主要介绍了机器学习基础之《分类算法(3)—模型选择与调优》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作用是如何选择出最好的K值

一、什么是交叉验证(cross validation)

1、定义
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证
把训练集本身再分

2、分析
我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理:
(1)训练集:训练集+验证集
(2)测试集:测试集
机器学习基础之《分类算法(3)—模型选择与调优》,机器学习,机器学习

二、超参数搜索-网格搜索(Grid Search)

1、什么是超参数
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型
k的取值
    [1, 3, 5, 7, 9, 11]
    遍历,for循环一个一个试
网格搜索其实就是在帮我们自动做这些事情,不需要自己写for循环了
机器学习基础之《分类算法(3)—模型选择与调优》,机器学习,机器学习

三、模型选择与调优API

1、sklearn.model_selection.GridSearchCV(estimator, param_grid=None, cv=None)
对估计器的指定参数值进行详尽搜索,GridSearchCV:grid网格,search搜索,CV交叉验证
参数:
estimator:估计器对象
param_grid:估计器参数,将我们准备好的,比如k的取值,以字典的形式传进来(dict){“n_neighbors”:[1,3,5]}
cv:指定几折交叉验证,最常用的是10折

2、fit()方法
输入训练数据,得出模型

3、score()方法
模型训练好之后,求准确率

4、查看哪个结果是比较好的
最佳参数:best_params_
最佳结果:best_score_
最佳估计器:best_estimator_
交叉验证结果:cv_results_

四、鸢尾花案例增加K值调优

1、添加代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV

def KNN_iris():
    """
    用KNN算法对鸢尾花进行分类
    """
    # 1、获取数据
    iris = load_iris()
    print("iris.data:\n", iris.data)
    print("iris.target:\n", iris.target)
    # 2、划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    # 3、特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    # 用训练集的平均值和标准差对测试集的数据来标准化
    # 这里测试集和训练集要有一样的平均值和标准差,而fit的工作就是计算平均值和标准差,所以train的那一步用fit计算过了,到了test这就不需要再算一遍自己的了,直接用train的就可以
    x_test = transfer.transform(x_test)
    # 4、KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train, y_train)
    # 5、模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

def KNN_iris_gscv():
    """
    用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    """
    # 1、获取数据
    iris = load_iris()
    print("iris.data:\n", iris.data)
    print("iris.target:\n", iris.target)
    # 2、划分数据集
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    # 3、特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    # 用训练集的平均值和标准差对测试集的数据来标准化
    # 这里测试集和训练集要有一样的平均值和标准差,而fit的工作就是计算平均值和标准差,所以train的那一步用fit计算过了,到了test这就不需要再算一遍自己的了,直接用train的就可以
    x_test = transfer.transform(x_test)
    # 4、KNN算法预估器
    estimator = KNeighborsClassifier()
    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
    estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
    estimator.fit(x_train, y_train)
    # 5、模型评估
    # 方法1:直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    #最佳参数:best_params_
    print("最佳参数:\n", estimator.best_params_)
    #最佳结果:best_score_
    print("最佳结果:\n", estimator.best_score_)
    #最佳估计器:best_estimator_
    print("最佳估计器:\n", estimator.best_estimator_)
    #交叉验证结果:cv_results_
    print("交叉验证结果:\n", estimator.cv_results_)
    return None

if __name__ == "__main__":
    # 代码1:用KNN算法对鸢尾花进行分类
    #KNN_iris()
    # 代码2:用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    KNN_iris_gscv()

2、运行结果

iris.data:
 [[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]
 [5.4 3.9 1.7 0.4]
 [4.6 3.4 1.4 0.3]
 [5.  3.4 1.5 0.2]
 [4.4 2.9 1.4 0.2]
 [4.9 3.1 1.5 0.1]
 [5.4 3.7 1.5 0.2]
 [4.8 3.4 1.6 0.2]
 [4.8 3.  1.4 0.1]
 [4.3 3.  1.1 0.1]
 [5.8 4.  1.2 0.2]
 [5.7 4.4 1.5 0.4]
 [5.4 3.9 1.3 0.4]
 [5.1 3.5 1.4 0.3]
 [5.7 3.8 1.7 0.3]
 [5.1 3.8 1.5 0.3]
 [5.4 3.4 1.7 0.2]
 [5.1 3.7 1.5 0.4]
 [4.6 3.6 1.  0.2]
 [5.1 3.3 1.7 0.5]
 [4.8 3.4 1.9 0.2]
 [5.  3.  1.6 0.2]
 [5.  3.4 1.6 0.4]
 [5.2 3.5 1.5 0.2]
 [5.2 3.4 1.4 0.2]
 [4.7 3.2 1.6 0.2]
 [4.8 3.1 1.6 0.2]
 [5.4 3.4 1.5 0.4]
 [5.2 4.1 1.5 0.1]
 [5.5 4.2 1.4 0.2]
 [4.9 3.1 1.5 0.2]
 [5.  3.2 1.2 0.2]
 [5.5 3.5 1.3 0.2]
 [4.9 3.6 1.4 0.1]
 [4.4 3.  1.3 0.2]
 [5.1 3.4 1.5 0.2]
 [5.  3.5 1.3 0.3]
 [4.5 2.3 1.3 0.3]
 [4.4 3.2 1.3 0.2]
 [5.  3.5 1.6 0.6]
 [5.1 3.8 1.9 0.4]
 [4.8 3.  1.4 0.3]
 [5.1 3.8 1.6 0.2]
 [4.6 3.2 1.4 0.2]
 [5.3 3.7 1.5 0.2]
 [5.  3.3 1.4 0.2]
 [7.  3.2 4.7 1.4]
 [6.4 3.2 4.5 1.5]
 [6.9 3.1 4.9 1.5]
 [5.5 2.3 4.  1.3]
 [6.5 2.8 4.6 1.5]
 [5.7 2.8 4.5 1.3]
 [6.3 3.3 4.7 1.6]
 [4.9 2.4 3.3 1. ]
 [6.6 2.9 4.6 1.3]
 [5.2 2.7 3.9 1.4]
 [5.  2.  3.5 1. ]
 [5.9 3.  4.2 1.5]
 [6.  2.2 4.  1. ]
 [6.1 2.9 4.7 1.4]
 [5.6 2.9 3.6 1.3]
 [6.7 3.1 4.4 1.4]
 [5.6 3.  4.5 1.5]
 [5.8 2.7 4.1 1. ]
 [6.2 2.2 4.5 1.5]
 [5.6 2.5 3.9 1.1]
 [5.9 3.2 4.8 1.8]
 [6.1 2.8 4.  1.3]
 [6.3 2.5 4.9 1.5]
 [6.1 2.8 4.7 1.2]
 [6.4 2.9 4.3 1.3]
 [6.6 3.  4.4 1.4]
 [6.8 2.8 4.8 1.4]
 [6.7 3.  5.  1.7]
 [6.  2.9 4.5 1.5]
 [5.7 2.6 3.5 1. ]
 [5.5 2.4 3.8 1.1]
 [5.5 2.4 3.7 1. ]
 [5.8 2.7 3.9 1.2]
 [6.  2.7 5.1 1.6]
 [5.4 3.  4.5 1.5]
 [6.  3.4 4.5 1.6]
 [6.7 3.1 4.7 1.5]
 [6.3 2.3 4.4 1.3]
 [5.6 3.  4.1 1.3]
 [5.5 2.5 4.  1.3]
 [5.5 2.6 4.4 1.2]
 [6.1 3.  4.6 1.4]
 [5.8 2.6 4.  1.2]
 [5.  2.3 3.3 1. ]
 [5.6 2.7 4.2 1.3]
 [5.7 3.  4.2 1.2]
 [5.7 2.9 4.2 1.3]
 [6.2 2.9 4.3 1.3]
 [5.1 2.5 3.  1.1]
 [5.7 2.8 4.1 1.3]
 [6.3 3.3 6.  2.5]
 [5.8 2.7 5.1 1.9]
 [7.1 3.  5.9 2.1]
 [6.3 2.9 5.6 1.8]
 [6.5 3.  5.8 2.2]
 [7.6 3.  6.6 2.1]
 [4.9 2.5 4.5 1.7]
 [7.3 2.9 6.3 1.8]
 [6.7 2.5 5.8 1.8]
 [7.2 3.6 6.1 2.5]
 [6.5 3.2 5.1 2. ]
 [6.4 2.7 5.3 1.9]
 [6.8 3.  5.5 2.1]
 [5.7 2.5 5.  2. ]
 [5.8 2.8 5.1 2.4]
 [6.4 3.2 5.3 2.3]
 [6.5 3.  5.5 1.8]
 [7.7 3.8 6.7 2.2]
 [7.7 2.6 6.9 2.3]
 [6.  2.2 5.  1.5]
 [6.9 3.2 5.7 2.3]
 [5.6 2.8 4.9 2. ]
 [7.7 2.8 6.7 2. ]
 [6.3 2.7 4.9 1.8]
 [6.7 3.3 5.7 2.1]
 [7.2 3.2 6.  1.8]
 [6.2 2.8 4.8 1.8]
 [6.1 3.  4.9 1.8]
 [6.4 2.8 5.6 2.1]
 [7.2 3.  5.8 1.6]
 [7.4 2.8 6.1 1.9]
 [7.9 3.8 6.4 2. ]
 [6.4 2.8 5.6 2.2]
 [6.3 2.8 5.1 1.5]
 [6.1 2.6 5.6 1.4]
 [7.7 3.  6.1 2.3]
 [6.3 3.4 5.6 2.4]
 [6.4 3.1 5.5 1.8]
 [6.  3.  4.8 1.8]
 [6.9 3.1 5.4 2.1]
 [6.7 3.1 5.6 2.4]
 [6.9 3.1 5.1 2.3]
 [5.8 2.7 5.1 1.9]
 [6.8 3.2 5.9 2.3]
 [6.7 3.3 5.7 2.5]
 [6.7 3.  5.2 2.3]
 [6.3 2.5 5.  1.9]
 [6.5 3.  5.2 2. ]
 [6.2 3.4 5.4 2.3]
 [5.9 3.  5.1 1.8]]
iris.target:
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]
y_predict:
 [0 2 0 0 2 1 2 0 2 1 2 1 2 2 1 1 2 1 1 0 0 2 0 0 1 1 1 2 0 1 0 1 0 0 1 2 1
 2]
直接比对真实值和预测值:
 [ True  True  True  True  True  True  True  True  True  True  True  True
  True  True  True False  True  True  True  True  True  True  True  True
  True  True  True  True  True  True  True  True  True  True False  True
  True  True]
准确率为:
 0.9473684210526315
最佳参数:
 {'n_neighbors': 11}
最佳结果:
 0.9734848484848484
最佳估计器:
 KNeighborsClassifier(n_neighbors=11)
交叉验证结果:
 {'mean_fit_time': array([0.00094719, 0.00108812, 0.00107462, 0.00109863, 0.00115507,
       0.00117781]), 'std_fit_time': array([1.09564469e-04, 7.04557722e-05, 4.35584663e-04, 2.08750681e-04,
       2.51903306e-04, 1.49746094e-04]), 'mean_score_time': array([0.00189986, 0.00213163, 0.00194747, 0.00228534, 0.00236366,
       0.00241489]), 'std_score_time': array([0.00014605, 0.0002255 , 0.00033167, 0.00028329, 0.00035582,
       0.00026656]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 9, 11],
             mask=[False, False, False, False, False, False],
       fill_value='?',
            dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}, {'n_neighbors': 11}], 'split0_test_score': array([1., 1., 1., 1., 1., 1.]), 'split1_test_score': array([0.91666667, 0.91666667, 1.        , 0.91666667, 0.91666667,
       0.91666667]), 'split2_test_score': array([1., 1., 1., 1., 1., 1.]), 'split3_test_score': array([1.        , 1.        , 1.        , 1.        , 0.90909091,
       1.        ]), 'split4_test_score': array([1., 1., 1., 1., 1., 1.]), 'split5_test_score': array([0.90909091, 0.90909091, 1.        , 1.        , 1.        ,
       1.        ]), 'split6_test_score': array([1., 1., 1., 1., 1., 1.]), 'split7_test_score': array([0.90909091, 0.90909091, 0.90909091, 0.90909091, 1.        ,
       1.        ]), 'split8_test_score': array([1., 1., 1., 1., 1., 1.]), 'split9_test_score': array([0.90909091, 0.81818182, 0.81818182, 0.81818182, 0.81818182,
       0.81818182]), 'mean_test_score': array([0.96439394, 0.95530303, 0.97272727, 0.96439394, 0.96439394,
       0.97348485]), 'std_test_score': array([0.04365767, 0.0604591 , 0.05821022, 0.05965639, 0.05965639,
       0.05742104]), 'rank_test_score': array([5, 6, 2, 3, 3, 1], dtype=int32)}

2、准确率和最佳结果
准确率是测试集里的效果
最佳结果是在训练集划分成训练集和验证集,验证集里的结果
 文章来源地址https://www.toymoban.com/news/detail-656523.html

到了这里,关于机器学习基础之《分类算法(3)—模型选择与调优》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习基础之《分类算法(6)—决策树》

    一、决策树 1、认识决策树 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 2、一个对话的例子 想一想这个女生为什么把年龄放在最上面判断!!! 如何高效的进行决策?特征的先后顺序

    2024年02月09日
    浏览(50)
  • 【机器学习案例】不同的模型算法对鸢尾花数据集进行分类

    经典机器学习入门项目,使用逻辑回归、线性判别分析、KNN、分类与回归树、朴素贝叶斯、向量机、随机森林、梯度提升决策树对不同占比的训练集进行分类 数据源 :Iris Species | Kaggle 150行,5列,分三种鸢尾花类型,每种类型50个样本,每行数据包含花萼长度、花萼宽度、花

    2024年02月04日
    浏览(34)
  • 机器学习基础之《分类算法(4)—案例:预测facebook签到位置》

    一、背景 1、说明 2、数据集 row_id:签到行为的编码 x y:坐标系,人所在的位置 accuracy:定位的准确率 time:时间戳 place_id:预测用户将要签到的位置 3、数据集下载 https://www.kaggle.com/navoshta/grid-knn/data 国内下不了,无法收验证码,还是在csdn用积分下一个别人上传的 二、流程

    2024年02月11日
    浏览(33)
  • 机器学习 day24(多类分类模型,Softmax回归算法及其损失函数)

    1. 多类分类 多类分类问题仍然是分类问题,所以预测y的可能结果是少量的,而不是无穷多个,且对于多类分类它>2 如上图:左侧为二分类,右侧为多分类,可以通过决策边界来划分区域 2. Softmax回归算法 对逻辑回归模型,先计算z,再计算g(z)。此时可以将逻辑回归视为计算

    2024年02月13日
    浏览(44)
  • 机器学习基础之《回归与聚类算法(4)—逻辑回归与二分类(分类算法)》

    一、什么是逻辑回归 1、逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛 2、叫回归,但是它是一个分类算法 二、逻辑回归的应用场

    2024年02月07日
    浏览(55)
  • 机器学习基础之《分类算法(1)—sklearn转换器和估计器》

    一、转换器 1、什么是转换器 之前做特征工程的步骤: (1)第一步就是实例化了一个转换器类(Transformer) (2)第二步就是调用fit_transform,进行数据的转换 2、我们把特征工程的接口称之为转换器,其中转换器调用有这么几种形式 fit_transform() fit() transform() 3、例子 我们以标

    2024年02月12日
    浏览(36)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(67)
  • 【MATLAB第56期】#源码分享 | 基于MATLAB的机器学习算法单输入多输出分类预测模型思路(回归改分类)

    针对单输入多输出分类预测,可采用回归的方式进行预测。 本文采用BP神经网络进行演示。 数据为1输入,5输出,总共482个样本。 输出分为五个指标,每个指标共4个评分维度,即【0 10 20 30】 保持样本均匀多样性,可将数据打乱。 若不需要打乱,上面代码改成: 训练样本数

    2024年02月17日
    浏览(36)
  • 机器学习基础09-审查分类算法(基于印第安糖尿病Pima Indians数据集)

    算法审查是选择合适的机器学习算法的主要方法之一。审查算法前并 不知道哪个算法对问题最有效,必须设计一定的实验进行验证,以找到对问题最有效的算法。本章将学习通过 scikit-learn来审查六种机器学习的分类算法,通过比较算法评估矩阵的结果,选择合适的算法。 审

    2024年02月11日
    浏览(42)
  • Educode--机器学习基础模型与算法测试闯关实验

    # -*- coding: utf-8 -*- \\\'\\\'\\\' 油气藏的储量密度Y与生油门限以下平均地温梯度X1、 生油门限以下总有机碳百分比X2、生油岩体积与沉积岩体积百分比X3、砂泥岩厚度百分比X4、 有机转化率X5有关,数据文件为“1.xlsx”,字段如下: 样本ID    X1    X2    X3    X4    X5    Y

    2024年02月06日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包