什么是卷积神经网络

这篇具有很好参考价值的文章主要介绍了什么是卷积神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

什么是卷积神经网络

 全链接相对笨重:大胖子​编辑

​编辑 参数众多:容易造成过拟合

​编辑 卷积核:进行图像特征提取,源于卷积原理:求相交面积

卷积的作用

卷积的意义

​编辑 通过卷积核减少参数

深度卷积网络

 ReLu函数:负数变成0;

ReLu:去除坏习惯​编辑

 什么是池化:抓住主要矛盾​编辑

​编辑 平均池化,最大池化

池化层:


什么是卷积神经网络

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

 全链接相对笨重:大胖子

 参数众多:容易造成过拟合

 卷积核:进行图像特征提取,源于卷积原理:求相交面积

卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积重叠长度的积分

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

卷积的作用

  1. 特征提取:卷积可以通过滤波器提取出信号中的特征,比如边缘、纹理等。这些特征对于图像分类和识别任务非常重要。
  2. 降维:卷积可以通过池化操作减小图像的尺寸,从而降低数据的维度。这对于处理大规模图像和文本数据非常有用。
  3. 去噪:卷积可以通过滤波器去除信号中的噪声。这在信号处理和图像处理领域中非常常见,有助于提高数据的质量。
  4. 图像增强:卷积可以通过一些滤波器对图像进行增强,比如锐化、平滑等。这有助于提高图像的视觉效果和品质。

卷积的意义

  1. 模拟生物视觉:卷积操作模拟了人眼对图像进行观察、辨认的过程,因此卷积在图像处理领域应用广泛。它可以帮助我们理解人类视觉系统如何工作,并且为我们提供了一种有效的处理图像和语音的方法。
  2. 提升算法性能:卷积神经网络(CNN)是目前深度学习中最重要的模型之一,其基本结构就是卷积层,卷积操作在图像识别、语音识别和自然语言处理等领域提升了算法的性能。这使得卷积成为了现代机器学习和人工智能的重要组成部分。
  3. 数据压缩:卷积可以通过降维和滤波等操作减小数据的尺寸,从而实现数据的压缩。这对于处理大规模数据、实现数据存储和传输非常有用。

 

傅立叶变换最重要的应用之一就是可以将卷积方程变成两个函数的乘积形式去求解。卷积分是积分方程家族的一名重要成员。

卷积是一种积分运算,它可以用来描述线性时不变系统的输入和输出的关系:即输出可以通过输入和一个表征系统特性的函数(冲激响应函数)进行卷积运算得到。 
 

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络 

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络 

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络 

 通过卷积核减少参数

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络 

 什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

 

深度卷积网络

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

 神经网络能够解决非线性问题在于加入激活函数,反之就是线性回归

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

 什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

 ReLu函数:负数变成0;

 

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

ReLu:去除坏习惯

 什么是池化:抓住主要矛盾

 平均池化,最大池化

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络 

 

池化层:

降低维度,减少参数,避免过拟合 

什么是卷积神经网络,2023 AI,深度学习,cnn,神经网络

LeNet:梯度学习卷积
zfnet通过可视化转世了卷积神经网络各层的作用。
VGGNET采用堆积的小卷集合集替代大的卷积合,不仅能够增加角色函数的判断性还能够减少参数量。
googlenet增加了卷积神经网络的宽度,采用小卷积核1*1,降维,减少参数量;
resNet残差网络解决了网络模型的退化问题,使得神经网络可以更深。 文章来源地址https://www.toymoban.com/news/detail-656880.html

到了这里,关于什么是卷积神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型(LeNet、AlexNet、VGG、NiN)

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月12日
    浏览(55)
  • 深度学习|卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络结构,主要用于 图像识别 、 计算机视觉 等领域。该结构在处理图像等高维数据时表现出色,因为它具有共享权重和局部感知的特点,一方面减少了权值的数量使得网络易于优化,另一方面降低了模型的复

    2024年02月11日
    浏览(43)
  • 深度学习,卷积神经网络

      CV领域发展 CV领域是计算机视觉(Computer Vision)领域的简称。 计算机视觉是指利用计算机模拟人类视觉系统的科学,让计算机具有类似于人类在观察外界的视觉、图像的能力,包括图像处理、图像分析、图像理解等。 计算机视觉领域发展有以下特点: 视觉系统的出现和不

    2024年02月15日
    浏览(55)
  • 【深度学习】6-1 卷积神经网络 - 卷积层

    卷积神经网络(Convolutional Neural Network, CNN )。 CNN 被用于图像识别、语音识别等各种场合,在图像识别的比赛中,基于深度学习的方法几乎都以 CNN 为基础。 首先,来看一下 CNN 的网络结构,了解 CNN 的大致框架。CNN 和之前介绍的神经网络一样,可以像乐高积木一样通过组装层

    2024年02月10日
    浏览(48)
  • Python中的深度学习:神经网络与卷积神经网络

    当下,深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言,Python提供了丰富的工具和库,为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习,重点聚焦于神经网络与卷积神经网络的原理和应用。 深度学习是机器学

    2024年02月08日
    浏览(45)
  • 深度学习算法及卷积神经网络

    传统神经网络 深度学习不适用情况:跨域(股票预测问题),旧历史数据的规律不适合新数据的规律 矩阵计算: 输入数据x[32×32×3]=3072个像素点,展开成一列, 目的:做一个10分类,10组权重参数,得到10个值,属于各个类别的概率 偏置项b,10个值 权重参数W得到:先随机,

    2023年04月08日
    浏览(53)
  • 深度学习——CNN卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习中常用于处理具有网格结构数据的神经网络模型。它在计算机视觉领域广泛应用于图像分类、目标检测、图像生成等任务。 CNN 的核心思想是通过利用局部感知和参数共享来捕捉输入数据的空间结构信息。相比于传统

    2024年02月15日
    浏览(48)
  • 深度学习-卷积神经网络-AlexNET

    本章内容来自B站: AlexNet深度学习图像分类算法 5.池化层 6.全连接层 7.网络架构 8.Relu激活函数 sigmoid和tanh会产生梯度消失或者爆炸的问题 手写数字识别 双GPU上 5.过拟合-dropout 6.性能 1.三位大师 2.论文详细内容

    2024年02月07日
    浏览(47)
  • 深度学习|CNN卷积神经网络

    在CNN没有出现前,图像对人工智能来说非常难处理。 主要原因: 图像要处理的数据量太大了。图像由像素组成,每个像素又由不同颜色组成,一张1000×1000彩色RGB图像需要的参数是1000×1000×3,需要三百万参数左右,普通神经网络会全用全连接方法来学习整幅图像上的特征,处

    2024年02月11日
    浏览(52)
  • 深度学习基础——卷积神经网络(一)

    卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了Mind

    2024年02月20日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包