用pytorch实现Resnet

这篇具有很好参考价值的文章主要介绍了用pytorch实现Resnet。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

     ResNet(Residual Network)是一种深度卷积神经网络架构,由Kaiming He等人于2015年提出。它在计算机视觉领域引起了革命性的变革,使得训练更深的神经网络成为可能,超越了传统网络架构的限制。
     ResNet的主要创新在于残差学习的概念。传统神经网络存在梯度消失的问题,即随着梯度在多个层传播,其数值变得指数级小,从而阻碍了学习过程,限制了网络的有效训练深度。

      ResNet通过引入跳跃连接或快捷连接来解决这个问题。与直接拟合期望的映射不同,ResNet学习拟合残差映射,即期望输出与输入之间的差异。这些跳跃连接允许梯度直接在多个层之间流动,并缓解了梯度消失的问题。
       ResNet的核心构建块是残差块,它由两个卷积层、批归一化和ReLU激活函数组成。残差块接收输入张量,通过这些层,然后将输入张量和卷积层的输出相加。加法操作将原始输入与学到的残差相结合,创建了梯度流的快捷路径

用pytorch实现Resnet,pytorch,人工智能,python
    残差块

residual结构使用了一种shortcut的连接方式,也可理解为捷径。让特征矩阵隔层相加,注意F(X)和X形状要相同,所谓相加是特征矩阵相同位置上的数字进行相加

用pytorch实现Resnet,pytorch,人工智能,python

 残差块里首先有2个有相同输出通道数的3*3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1*1卷积层来将输入变换成需要的形状后再做相加运算

用pytorch实现Resnet,pytorch,人工智能,python

 文章来源地址https://www.toymoban.com/news/detail-657109.html

import torch
import torch.nn as nn


# Residual Block (Basic Building Block of ResNet)
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += self.shortcut(residual)
        out = self.relu(out)

        return out


# ResNet Architecture
class ResNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(ResNet, self).__init__()

        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(64, 3)
        self.layer2 = self._make_layer(128, 4, stride=2)
        self.layer3 = self._make_layer(256, 6, stride=2)
        self.layer4 = self._make_layer(512, 3, stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, out_channels, num_blocks, stride=1):
        layers = []
        layers.append(ResidualBlock(self.in_channels, out_channels, stride))
        self.in_channels = out_channels

        for _ in range(1, num_blocks):
            layers.append(ResidualBlock(out_channels, out_channels))

        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.maxpool(out)

        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        out = self.avgpool(out)
        out = torch.flatten(out, 1)
        out = self.fc(out)

        return out


# Create an instance of the ResNet model
model = ResNet(num_classes=1000)

# Print the model architecture
print(model)

 ResNet通常由多个堆叠的残差块组成,深度逐渐增加。网络架构包括不同的变体,如ResNet-18、ResNet-34、ResNet-50、ResNet-101和ResNet-152,其中数字表示网络中总层数。较深的变体在图像分类、目标检测和分割等各种计算机视觉任务中表现出更好的性能。
ResNet的一个显著优势是可以训练非常深的网络而不降低性能。它使得可以训练超过100层的网络,同时仍然保持准确性和收敛性。此外,跳跃连接使得轻松实现恒等映射,意味着可以将浅层网络转变为更深的网络而不降低性能。
      ResNet对深度学习领域产生了重大影响,并成为各种计算机视觉应用中广泛采用的架构。它的残差学习概念也启发了其他使用跳跃连接的架构的发展,如DenseNet和Highway Networks。

用pytorch实现Resnet,pytorch,人工智能,python

 

 

到了这里,关于用pytorch实现Resnet的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(66)
  • 人工智能(Pytorch)搭建GRU网络,构造数据实现训练过程与评估

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型3-GRU网络的构建,构造数据实现训练过程与评估,让大家了解整个训练的过程。 GRU(Gated Recurrent Unit,门控循环单元)是一种循环神经网络(RNN)的变体,用于处理序列数据。对于每个时刻,GRU模型都根据当前

    2023年04月09日
    浏览(60)
  • 人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测。孪生网络是一种用于度量学习(Metric Learning)和比较学习(Comparison Learning)的深度神经网络模型。它主要用于学习将两个输入样本映射到一个

    2024年02月11日
    浏览(143)
  • 人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别,BiLSTM+CRF 模型是一种常用的序列标注算法,可用于词性标注、分词、命名实体识别等任务。本文利用pytorch搭建一个BiLSTM+CRF模型,并给出数据样例,

    2024年02月09日
    浏览(63)
  • 人工智能——“kmeans实现图片分割”(Python实现)

    (2)边缘分割:对图像边缘进行检测,即检测图像中灰度值发生跳变的地方,则为一片 区域的边缘。 (3)直方图法:对图像的颜色建立直方图,而直方图的波峰波谷能够表示一块区域的颜 色值的范围,来达到分割的目的。 (4)特定理论:基于 聚类分析 、小波变换等理论完成图像

    2024年04月17日
    浏览(39)
  • 基于虚拟现实的游戏中的人工智能:如何使用Python和Pygame实现人工智能

    作者:禅与计算机程序设计艺术 《基于虚拟现实的游戏中的人工智能:如何使用Python和Pygame实现人工智能》 1.1. 背景介绍 随着虚拟现实 (VR) 和增强现实 (AR) 技术的发展,游戏行业也在不断进步。在这个虚拟世界中,玩家可以扮演不同的角色,探索各种奇妙的世界,体验沉浸

    2024年02月11日
    浏览(60)
  • 人工智能-OpenCV+Python实现人脸识别(人脸检测)

    在OpenCV中使用Haar特征检测人脸,那么需要使用OpenCV提供的xml文件(级联表)在haarcascades目录下。这张级联表有一个训练好的AdaBoost训练集。首先要采用样本的Haar特征训练分类器,从而得到一个级联的AdaBoost分类器。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征

    2024年02月06日
    浏览(104)
  • 【人工智能】简单线性回归模型介绍及python实现

    简单线性回归是人工智能和统计学中一个基本的预测技术,用于分析两个连续变量之间的线性关系。在简单线性回归中,我们试图找到一个线性方程来最好地描述这两个变量之间的关系。 变量 :简单线性回归涉及两个变量 - 自变量(independent variable)和因变量(dependent vari

    2024年01月17日
    浏览(56)
  • 人工智能基础 | Python实现 洗衣机模糊推理系统

    Pycharm + Anaconda3 已知一组污泥和油脂两个参数的 模糊集合 ,以及对应的洗涤时间推理的结果。 现再给出一组污泥和油脂的模糊集合,进行 模糊推理 ,推出洗涤时间的 模糊集合 。 最后进行 模糊决策 ,选择洗涤时间的档次,采用 最大隶属度 和 加权平均法 两种方法 “污泥

    2023年04月08日
    浏览(67)
  • 【人工智能】多元线性回归模型举例及python实现方式

    比如你做了一个企业想要招人,但是不知道月薪应该定在多少,你做了一个月薪和收入的调研,包括年限、学历、地区和月薪 做一个月薪=w1 年限+w2 学历+w3*城市+…+b的工作年限和薪资的多元线性模型,然后找出最适合线性模型的直线-成本函数、梯度下降方式,来预估你可以

    2024年02月19日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包