更好的 3D 网格,从重建到生成式 AI

这篇具有很好参考价值的文章主要介绍了更好的 3D 网格,从重建到生成式 AI。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 文章来源地址https://www.toymoban.com/news/detail-657687.html

更好的 3D 网格,从重建到生成式 AI,3d,人工智能,生成式AI

 

推荐:使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景

 

这些生成的 3D 模型通常提取为标准三角形网格。网格表示提供了许多好处,包括支持现有软件包、高级硬件加速和支持物理仿真。但是,并非所有网格都是平等的,这些优势只能在高质量网格上实现。

NVIDIA 最近的研究发现了一种名为 FlexiCubes 的新方法,用于在 3D 管线中生成高质量的网格,从而提高各种应用程序的质量。

灵活立方体网格生成

更好的 3D 网格,从重建到生成式 AI,3d,人工智能,生成式AI

图1.通过FlexiCube重建的示例网格

从重建到模拟的 AI 管道的共同要素是网格是通过优化过程生成的。在过程的每个步骤中,都会更新表示以更好地匹配所需的输出。

FlexiCubes网格生成的新思想是引入额外的灵活参数,以精确调整生成的网格。通过在优化过程中更新这些参数,可以大大提高网格质量。

熟悉基于网格的管道的人过去可能使用行进立方体来提取网格。FlexiCubes可以用作基于优化的AI管道中行进立方体的直接替代品。

更好的 3D 网格,从重建到生成式 AI,3d,人工智能,生成式AI

图2.灵活立方体高品质网眼

FlexiCubes 从摄影测量和生成 AI 等神经工作流程中生成高质量的网格。

更好的网格,更好的人工智能

FlexiCubes 网格提取改进了许多最近的 3D 网格生成管道的结果,生成更高质量的网格,在表示复杂形状中的精细细节方面做得更好。

生成的网格也非常适合物理仿真,其中网格质量对于使仿真高效和稳健尤为重要。四面体网格已准备好用于开箱即用的物理模拟。

 更好的 3D 网格,从重建到生成式 AI,3d,人工智能,生成式AI

 

图3.柔性立方体四面体网格示例

立即探索灵活立方体

这项研究是作为 NVIDIA 进步的一部分在洛杉矶举行的 SIGGRAPH 2023 上展示的。有关新方法的详细信息,请参阅用于基于梯度的网格优化的灵活等值面提取。在FlexiCubes项目页面上探索更多结果。

原文链接:更好的 3D 网格,从重建到生成式 AI (mvrlink.com)

 

到了这里,关于更好的 3D 网格,从重建到生成式 AI的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 3D 生成重建004-DreamFusion and SJC :TEXT-TO-3D USING 2D DIFFUSION

    3D 生成重建004-DreamFusion and SJC :TEXT-TO-3D USING 2D DIFFUSION 0 论文工作 对于生成任务,我们是需要有一个数据样本,让模型去学习数据分布 p ( x ) p(x) p ( x ) ,但是对于3d的生成来说,有两个挑战:1)一个完善的很大的3d数据数据集,对比2d的扩散模型是一个几亿的图像文本对上训

    2024年02月07日
    浏览(38)
  • 【三维重建】DreamGaussian:高斯splatting的单视图3D内容生成(原理+代码)

    项目主页:https://dreamgaussian.github.io/ (包含论文和代码) 提示:以下是本篇文章正文内容,下面案例可供参考 常用的3D内容创建方式,主要是 利用基于优化的通过分数蒸馏采样(SDS)进行的3D生成 。该方法每个样本优化较慢,很难实际应用。本文提出了DreamGaussian,兼顾效率

    2024年02月06日
    浏览(52)
  • ArcGIS Pro 转换Smart3D生成的倾斜3D模型数据osgb——创建集成网格场景图层包

    最近在做Arcgis 批处理的一些工作,然后再学习Python的同时,偶然觉得arcgis Pro是个好东西呢?然后结合近期的Smart3D倾斜3D模型数据,是否可以在arcgis里查看呢?带着这样的疑问和好奇,开始了arcgis Pro的学习,从安装到自学。找到了方法。 就是使用arcgis Pro创建集成网格场景图

    2023年04月19日
    浏览(50)
  • 人工智能伦理与城市规划的结合:如何让AI技术在城市规划中为人类创造更好的生活环境...

    随着人工智能技术的不断发展,它已经成为了许多行业中的重要驱动力。在城市规划领域,人工智能技术的应用也越来越广泛。然而,在人工智能技术在城市规划中发挥更大作用之前,我们需要关注人工智能伦理问题,确保其在城市规划中为人类创造更好的生活环境。 本文将

    2024年02月19日
    浏览(67)
  • 【AIGC核心技术剖析】用于高效 3D 内容创建生成(从单视图图像生成高质量的纹理网格)

    3D 内容创建的最新进展主要利用通过分数蒸馏抽样 (SDS) 生成的基于优化的 3D 生成。尽管已经显示出有希望的结果,但这些方法通常存在每个样本优化缓慢的问题,限制了它们的实际应用。在本文中,我们提出了DreamGaussian,这是一种新颖的3D内容生成框架,可以同时实现效

    2024年02月07日
    浏览(87)
  • 【CVPR 2023的AIGC应用汇总(8)】3D相关(编辑/重建/生成) diffusion扩散/GAN生成对抗网络方法...

    【CVPR 2023的AIGC应用汇总(5)】语义布局可控生成,基于diffusion扩散/GAN生成对抗 【CVPR 2023的AIGC应用汇总(4)】图像恢复,基于GAN生成对抗/diffusion扩散模型 【CVPR 2023的AIGC应用汇总(3)】GAN改进/可控生成的方法10篇 【CVPR 2023的AIGC应用汇总(2)】可控文生图,基于diffusion扩散模型/G

    2024年02月10日
    浏览(52)
  • 三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <二>

    git code: https://github.com/yfeng95/face3d paper list: PaperWithCode 3DMM方法,基于平均人脸模型,可实现线性的人脸生成。此外,基于人脸关键点,还能渲染对应的三维人脸模型。 基于3DMM模型的生成1:正常 基于3DMM模型的生成2:微笑 3DMM模型的原理是怎样的?如何实现二维与三维的生成呢

    2024年02月05日
    浏览(47)
  • 三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <一>

    git code: https://github.com/yfeng95/face3d paper list: PaperWithCode 该方法广泛用于基于三维人脸关键点的人脸生成、属性检测(如位姿、深度、PNCC等),能够快速实现人脸建模与渲染。推荐!!! 相机坐标下的人脸变换 光照渲染 3DMM模型 提示:对于初学者来说,作者强烈建议按照这个顺

    2024年01月21日
    浏览(42)
  • 论文解析-基于 Unity3D 游戏人工智能的研究与应用

    这段代码是一个重写了 AgentAction 方法的方法。以下是对每行代码解释: ①public override void AgentAction(float[] vectorAction) 这行代码声明了一个公共的、重写了父类的 AgentAction 方法的方法。它 接受一个 float 类型的数组作为参数。 ② float newAction0 = Mathf.Clamp(vectorAction[0], -1, 1); 这行代

    2024年02月03日
    浏览(55)
  • 智能优化算法应用:基于人工蜂鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

    摘要:本文主要介绍如何用人工蜂鸟算法进行3D无线传感器网(WSN)覆盖优化。 本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n R n ​ 的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n R n ​ 称为传感器

    2024年02月03日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包