open cv学习 (四)图像的几何变换

这篇具有很好参考价值的文章主要介绍了open cv学习 (四)图像的几何变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图像的几何变换

demo1
# dsize实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst1 = cv2.resize(img, (100, 100))
dst2 = cv2.resize(img, (400, 400))
# cv2.imshow("img", img)
# cv2.imshow("dst1", dst1)
# cv2.imshow("dst2", dst2)
cv2.imwrite("./cat01.png", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
# fx 和 fy 参数实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst3 = cv2.resize(img, None, fx=1/3, fy=1/2)
dst4 = cv2.resize(img, None, fx=2, fy=2)
cv2.imshow("img", img)
cv2.imshow("dst3", dst3)
cv2.imshow("dst4", dst4)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
# 翻转
import cv2
img = cv2.imread("./cat01.png")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
# 图像平移
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

M = np.float32([[1, 0, 0], [0, 1, -50]])
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
import cv2
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

center = (rows/2, cols/2)
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])
p1 = np.zeros((3, 2), np.float32)
# 左上角坐标
p1[0] = [0, 0]
# 右上角坐标
p1[1] = [cols - 1, 0]
# 左下角坐标
p1[2] = [0, rows - 1]

p2 = np.zeros((3, 2), np.float32)
p2[0] = [50, 0]
p2[1] = [cols - 1, 0]
p2[2] = [0, rows - 1]
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
import cv2
import numpy as np
img = cv2.imread("./cat01.png")

rows = len(img)
cols = len(img[0])

p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
p2 = np.zeros((4, 2), np.float32)
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

文章来源地址https://www.toymoban.com/news/detail-657783.html

到了这里,关于open cv学习 (四)图像的几何变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv-23 图像几何变换02-翻转-cv2.flip()

    在 OpenCV 中,图像的翻转采用函数 cv2.flip()实现 ,该函数能够实现图像在水平方向翻转、垂直方向翻转、两个方向同时翻转,其语法结构为: 式中:  dst 代表和原始图像具有同样大小、类型的目标图像。  src 代表要处理的原始图像。  flipCode 代表旋转类型。该参数的意

    2024年02月15日
    浏览(54)
  • opencv-22 图像几何变换01-缩放-cv2.resize()(图像增强,图像变形,图像拼接)

    几何变换是计算机图形学中的一种图像处理技术,用于对图像进行空间上的变换,而不改变图像的内容。这些变换可以通过对图像中的像素位置进行调整来实现。 常见的几何变换包括: 平移(Translation) :将图像在水平和/或垂直方向上进行平移,即将图像的每个像素沿着指

    2024年02月15日
    浏览(46)
  • opencv-26 图像几何变换04- 重映射-函数 cv2.remap()

    重映射(Remapping)是图像处理中的一种操作,用于将图像中的像素从一个位置映射到另一个位置。重映射可以实现图像的平移、旋转、缩放和透视变换等效果。它是一种基于像素级的图像变换技术,可以通过定义映射关系来改变图像的几何形状和外观。 在重映射中,我们需要

    2024年02月15日
    浏览(53)
  • 计算机视觉 图像形成 几何图形和变换 3D到2D投影

            现在我们知道如何表示2D和3D几何图元以及如何在空间上转换它们,我们需要指定如何将 3D图元投影到图像平面上。 我们可以使用线性3D到2D投影矩阵来做到这一点。最简单的模型是正交法,它不需要除法就可以得到最终的(不均匀的)结果。更常用的模型是透视,

    2023年04月08日
    浏览(64)
  • 计算机图形图像技术(OpenCV核心功能、图像变换与图像平滑处理)

    1、显示图像 ①功能:在指定窗口中显示图像。 ②参数: name 为窗口的名字; image 为待显示的图像。 ③说明:可显示彩色或灰度的字节图像和浮点数图像,彩色图像数据按BGR顺序存储。 2、读入图像 ①功能:从指定文件读入图像。 ②参数: filename 为图像文件名,支持BMP、

    2024年02月03日
    浏览(50)
  • 【OpenCV • c++】图像几何变换 | 图像仿射变换

    🚀 个人简介:CSDN「 博客新星 」TOP 10 , C/C++ 领域新星创作者 💟 作    者: 锡兰_CC ❣️ 📝 专    栏: 【OpenCV • c++】计算机视觉 🌈 若有帮助,还请 关注➕点赞➕收藏 ,不行的话我再努努力💪💪💪

    2024年02月16日
    浏览(52)
  • (opencv)图像几何变换——缩放

    图像缩放是指将图像的尺寸变小或变大的过程,也就是减少或增加源图像数据的像素个数。图像缩放一定程度上会造成信息的丢失,因此需要考虑适宜的方法进行操作。 下面介绍两种常用的图像缩放方法的原理及实现 1.基于等间隔提取图像缩放 等间隔提取图像缩放是通过对

    2024年02月16日
    浏览(39)
  • (opencv)图像几何变换——平移

    图像的平移操作是将图像的所有像素坐标进行水平或垂直方向移动,也就是将所有像素点按照给定的偏移量在水平方向沿x轴、垂直方向上沿y轴移动。平移变换分为两种类型:图像大小变化与图像大小不变。第一种类型保证图像平移的完整信息,第二种图像导致原始图像的部

    2024年02月08日
    浏览(46)
  • 深度学习·理论篇(2023版)·第002篇深度学习和计算机视觉中的基础数学知识01:线性变换的定义+基于角度的线性变换案例(坐标变换)+点积和投影+矩阵乘法的几何意义+图形化精讲

    💕 恭喜本博客浏览量达到两百万,CSDN内容合伙人,CSDN人工智能领域实力新星~ 🧡 本文章为2021版本迭代更新版本,在结合有效知识的基础上对文章进行合理的增加,使得整个文章时刻顺应时代需要 🧡 本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理

    2023年04月08日
    浏览(56)
  • 【OpenCV • c++】图像几何变换 | 图像缩放

    🚀 个人简介:CSDN「 博客新星 」TOP 10 , C/C++ 领域新星创作者 💟 作    者: 锡兰_CC ❣️ 📝 专    栏: 【OpenCV • c++】计算机视觉 🌈 若有帮助,还请 关注➕点赞➕收藏 ,不行的话我再努努力💪💪💪

    2024年02月16日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包