Redis缓存读写策略(三种)
Cache Aside Pattern(旁路缓存模式)
Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。
写:
- 先更新 db
- 然后直接删除 cache 。
读 :
- 从 cache 中读取数据,读取到就直接返回
- cache 中读取不到的话,就从 db 中读取数据返回
- 再把数据放到 cache 中。
在写数据的过程中,可以先删除 cache ,后更新 db 么?”
答案: 那肯定是不行的!因为这样可能会造成 数据库(db)和缓存(Cache)数据不一致的问题。
举例:请求 1 先写数据 A,请求 2 随后读数据 A 的话,就很有可能产生数据不一致性的问题。
当你这样回答之后,面试官可能会紧接着就追问:“在写数据的过程中,先更新 db,后删除 cache 就没有问题了么?”
答案: 理论上来说还是可能会出现数据不一致性的问题,不过概率非常小,因为缓存的写入速度是比数据库的写入速度快很多。
举例:请求 1 先读数据 A,请求 2 随后写数据 A,并且数据 A 在请求 1 请求之前不在缓存中的话,也有可能产生数据不一致性的问题。
Cache Aside Pattern 的缺陷。
缺陷 1:首次请求数据一定不在 cache 的问题
解决办法:可以将热点数据可以提前放入 cache 中。
缺陷 2:写操作比较频繁的话导致 cache 中的数据会被频繁被删除,这样会影响缓存命中率 。
Read/Write Through Pattern(读写穿透)
写(Write Through):
- 先查 cache,cache 中不存在,直接更新 db。
- cache 中存在,则先更新 cache,然后 cache 服务自己更新 db(同步更新 cache 和 db)。
读(Read Through):
- 从 cache 中读取数据,读取到就直接返回 。
- 读取不到的话,先从 db 加载,写入到 cache 后返回响应。
Write Behind Pattern(异步缓存写入)
Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 db 的读写。
但是,两个又有很大的不同:Read/Write Through 是同步更新 cache 和 db,而 Write Behind 则是只更新缓存,不直接更新 db,而是改为异步批量的方式来更新 db。
很明显,这种方式对数据一致性带来了更大的挑战,比如 cache 数据可能还没异步更新 db 的话,cache 服务可能就就挂掉了。
这种策略在我们平时开发过程中也非常非常少见,但是不代表它的应用场景少,比如消息队列中消息的异步写入磁盘、MySQL 的 Innodb Buffer Pool 机制都用到了这种策略。
Write Behind Pattern 下 db 的写性能非常高,非常适合一些数据经常变化又对数据一致性要求没那么高的场景,比如浏览量、点赞量。
Redis数据结构(5+3)
5种基本数据结构
String
String 是 Redis 中最简单同时也是最常用的一个数据结构。String 是一种二进制安全的数据结构,可以用来存储任何类型的数据比如字符串、整数、浮点数、图片(图片的 base64 编码或者解码或者图片的路径)、序列化后的对象。
应用场景
需要存储常规数据的场景
- 举例:缓存 session、token、图片地址、序列化后的对象(相比较于 Hash 存储更节省内存)。
- 相关命令:
SET
、GET
。
需要计数的场景
- 举例:用户单位时间的请求数(简单限流可以用到)、页面单位时间的访问数。
- 相关命令:
SET
、GET
、INCR
、DECR
。
分布式锁
利用 SETNX key value
命令可以实现一个最简易的分布式锁(存在一些缺陷,通常不建议这样实现分布式锁)。
List(列表)
Redis 的 List 的实现为一个 双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。
应用场景
信息流展示
- 举例:最新文章、最新动态。
- 相关命令:
LPUSH
、LRANGE
。
消息队列
Redis List 数据结构可以用来做消息队列,只是功能过于简单且存在很多缺陷,不建议这样做。
相对来说,Redis 5.0 新增加的一个数据结构 Stream
更适合做消息队列一些,只是功能依然非常简陋。和专业的消息队列相比,还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。
Hash(哈希)
应用场景
对象数据存储场景
- 举例:用户信息、商品信息、文章信息、购物车信息。
- 相关命令:
HSET
(设置单个字段的值)、HMSET
(设置多个字段的值)、HGET
(获取单个字段的值)、HMGET
(获取多个字段的值)。
Set(集合)
Redis 中的 Set 类型是一种无序集合,集合中的元素没有先后顺序但都唯一,有点类似于 Java 中的 HashSet
应用场景
需要存放的数据不能重复的场景
- 举例:网站 UV 统计(数据量巨大的场景还是
HyperLogLog
更适合一些)、文章点赞、动态点赞等场景。 - 相关命令:
SCARD
(获取集合数量) 。 - 举例:共同好友(交集)、共同粉丝(交集)、共同关注(交集)、好友推荐(差集)、音乐推荐(差集)、订阅号推荐(差集+交集) 等场景。
- 相关命令:
SINTER
(交集)、SINTERSTORE
(交集)、SUNION
(并集)、SUNIONSTORE
(并集)、SDIFF
(差集)、SDIFFSTORE
(差集)。 -
需要随机获取数据源中的元素的场景
- 举例:抽奖系统、随机点名等场景。
- 相关命令:
SPOP
(随机获取集合中的元素并移除,适合不允许重复中奖的场景)、SRANDMEMBER
(随机获取集合中的元素,适合允许重复中奖的场景)。
Sorted Set(有序集合)
Sorted Set 类似于 Set,但和 Set 相比,Sorted Set 增加了一个权重参数 score
,使得集合中的元素能够按 score
进行有序排列,还可以通过 score
的范围来获取元素的列表。有点像是 Java 中 HashMap
和 TreeSet
的结合体。
应用场景
需要随机获取数据源中的元素根据某个权重进行排序的场景文章来源:https://www.toymoban.com/news/detail-658247.html
- 举例:各种排行榜比如直播间送礼物的排行榜、朋友圈的微信步数排行榜、王者荣耀中的段位排行榜、话题热度排行榜等等。
- 相关命令:
ZRANGE
(从小到大排序)、ZREVRANGE
(从大到小排序)、ZREVRANK
(指定元素排名)。
3种特殊数据结构
文章来源地址https://www.toymoban.com/news/detail-658247.html
到了这里,关于Redis缓存读写策略(三种)数据结构(5+3)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!