深入浅出Pytorch函数——torch.nn.init.dirac_

这篇具有很好参考价值的文章主要介绍了深入浅出Pytorch函数——torch.nn.init.dirac_。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

该函数用 Dirac δ \text{Dirac}\delta Diracδ 函数来填充3-5维输入张量或变量,在卷积层尽可能多的保存输入通道特征。

语法
torch.nn.init.dirac_(tensor, groups=1)
参数
  • tensor:[Tensor] 一个3~5维张量torch.Tensor
  • groups:[int] conv层中的组数,默认值为1
返回值

一个torch.Tensor且参数tensor也会更新文章来源地址https://www.toymoban.com/news/detail-658270.html

实例
w = torch.empty(3, 16, 5, 5)
nn.init.dirac_(w)
w = torch.empty(3, 24, 5, 5)
nn.init.dirac_(w, 3)
函数实现
def dirac_(tensor, groups=1):
    r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Dirac
    delta function. Preserves the identity of the inputs in `Convolutional`
    layers, where as many input channels are preserved as possible. In case
    of groups>1, each group of channels preserves identity

    Args:
        tensor: a {3, 4, 5}-dimensional `torch.Tensor`
        groups (int, optional): number of groups in the conv layer (default: 1)
    Examples:
        >>> w = torch.empty(3, 16, 5, 5)
        >>> nn.init.dirac_(w)
        >>> w = torch.empty(3, 24, 5, 5)
        >>> nn.init.dirac_(w, 3)
    """
    dimensions = tensor.ndimension()
    if dimensions not in [3, 4, 5]:
        raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")

    sizes = tensor.size()

    if sizes[0] % groups != 0:
        raise ValueError('dim 0 must be divisible by groups')

    out_chans_per_grp = sizes[0] // groups
    min_dim = min(out_chans_per_grp, sizes[1])

    with torch.no_grad():
        tensor.zero_()

        for g in range(groups):
            for d in range(min_dim):
                if dimensions == 3:  # Temporal convolution
                    tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1
                elif dimensions == 4:  # Spatial convolution
                    tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
                           tensor.size(3) // 2] = 1
                else:  # Volumetric convolution
                    tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
                           tensor.size(3) // 2, tensor.size(4) // 2] = 1
    return tensor

到了这里,关于深入浅出Pytorch函数——torch.nn.init.dirac_的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入浅出Pytorch函数——torch.nn.init.constant_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.init.calculate_gain

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月11日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(51)
  • 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(48)
  • 深入浅出Pytorch函数——torch.nn.init.trunc_normal_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月11日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.init.xavier_normal_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(40)
  • 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月11日
    浏览(43)
  • 深入浅出Pytorch函数——torch.nn.Linear

    分类目录:《深入浅出Pytorch函数》总目录 对输入数据做线性变换 y = x A T + b y=xA^T+b y = x A T + b 语法 参数 in_features :[ int ] 每个输入样本的大小 out_features :[ int ] 每个输出样本的大小 bias :[ bool ] 若设置为 False ,则该层不会学习偏置项目,默认值为 True 变量形状 输入变量:

    2024年02月12日
    浏览(43)
  • 深入浅出Pytorch函数——torch.nn.Softmax

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 机器学习中的数学——激活函数:Softmax函数 · 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax · 深入浅出Pytorch函数——torch.nn.Softmax 将Softmax函数应用于 n n n 维输入张量,重新缩放它们,使得 n n n 维输出张量的

    2024年02月15日
    浏览(54)
  • 深入浅出Pytorch函数——torch.nn.Module

    分类目录:《深入浅出Pytorch函数》总目录 Pytorch中所有网络的基类,我们的模型也应该继承这个类。 Modules 也可以包含其它 Modules ,允许使用树结构嵌入他们,我们还可以将子模块赋值给模型属性。 语法 方法 torch.nn.Module.apply 实例 通过上面方式赋值的 submodule 会被注册,当调

    2024年02月12日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包