tensorflow 模型计算中,预测错误;权重参数加载

这篇具有很好参考价值的文章主要介绍了tensorflow 模型计算中,预测错误;权重参数加载。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

tensorflow 模型计算中,预测错误;权重参数加载

tensorflow 模型计算主要代码(正确代码)

linear1_kernel_initializer = tf.constant_initializer(numpy.transpose(data["linear1.weight"]))
linear1_bias_initializer = tf.constant_initializer(numpy.transpose(data["linear1.bias"]))
linear1 = layers.Dense(units=400, activation=tf.nn.relu, kernel_initializer=linear1_kernel_initializer, use_bias=True, bias_initializer=linear1_bias_initializer, input_shape=(48,))
linear2_kernel_initializer = tf.constant_initializer(numpy.transpose(data["linear2.weight"]))
linear2_bias_initializer = tf.constant_initializer(numpy.transpose(data["linear2.bias"]))
linear2 = layers.Dense(units=400, activation=tf.nn.relu, kernel_initializer=linear2_kernel_initializer, use_bias=True, bias_initializer=linear2_bias_initializer)
linear3_kernel_initializer = tf.constant_initializer(numpy.transpose(data["linear3.weight"]))
linear3_bias_initializer = tf.constant_initializer(numpy.transpose(data["linear3.bias"]))
linear3 = layers.Dense(units=2, activation=None, kernel_initializer=linear3_kernel_initializer, use_bias=True, bias_initializer=linear3_bias_initializer)
model = tf.keras.Sequential([linear1, linear2, linear3])

input = numpy.ones((2, 48), dtype=float)
predict = model.predict(input)
print(predict[0:100,:])

原本权重参数采用以下代码

linear1_kernel_initializer = tf.constant_initializer(data["linear1.weight"])
linear1_bias_initializer = tf.constant_initializer((data["linear1.bias"])

但模型预测值与Matlab计算值有误。后经过测试定位到 layers.Dense 此处,然后创建 layers.Dense时设置use_bias=False参数,不去考虑偏差参数。改变初始权重参数方式:

input_size = 2
units_p = 3
data = numpy.array([1, 1, 2, 2, 2, 3], dtype=float)
linear1_kernel_initializer = tf.constant_initializer(data)
linear1 = layers.Dense(units=units_p, activation=None, kernel_initializer=linear1_kernel_initializer, use_bias=False, input_shape=(input_size,))
#变化data
data = numpy.array([1, 2, 3, 1, 2, 3], dtype=float)
#或者
data = numpy.array([1, 2, 3, 1, 2, 3], dtype=float).reshape(3, 2)

通过这样的方式,才发现 linear1_kernel_initializer = tf.constant_initializer(data) 中的 data 有问题,通过对预测结果的分析,发现 tf.constant_initializer() 会将传递过来的数据拉成一维,再根据 units不同层 来变更数据矩阵大小,所以传入tf.constant_initializer()的数据只要总大小是对的就可以传入,而不需要shape一致。
所以,既然之前的数据预测结果有误,那就是数据排列有误,将 data 数据进行矩阵转置 再 传入到tf.constant_initializer() 函数中
问题成功解决。
同时我想说明的是,pytorchtorch.nn.LinearW x + btensorflowlayers.Densex W + b

tensorflow这种情况可以形象的表达为 流动的关系,input -> HL1 -> HL2 -> output(HL1为隐藏层1)

input 卷上 W1 + b1 => HL1结果
HL1结果 卷上 W2 + b2 => HL2结果
HL2结果 卷上 W3 + b3 => outpu文章来源地址https://www.toymoban.com/news/detail-658646.html

到了这里,关于tensorflow 模型计算中,预测错误;权重参数加载的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Tensorflow】模型如何加载HDF文件数据集?

    如果每个样本都被保存为一个单独的 HDF5 文件,可以使用 `tf.data.Dataset.list_files` 函数来创建一个文件名数据集,然后使用 `tf.data.Dataset.interleave` 函数来并行读取多个文件。 下面的示例展示了如何从多个 HDF5 文件中读取数据并创建一个 `tf.data.Dataset` 对象: import h5py import tenso

    2023年04月24日
    浏览(33)
  • TensorFlow 高级技巧:自定义模型保存、加载和分布式训练

    本篇文章将涵盖 TensorFlow 的高级应用,包括如何自定义模型的保存和加载过程,以及如何进行分布式训练。 在 TensorFlow 中,我们可以通过继承 tf.train.Checkpoint 来自定义模型的保存和加载过程。 以下是一个例子: TensorFlow 提供了 tf.distribute.Strategy API,让我们可以在不同的设备

    2024年02月15日
    浏览(37)
  • 【pytorch】使用训练好后的模型权重,在验证集上输出分类的混淆矩阵并保存错误图片

    在机器学习领域,混淆矩阵是一个非常有用的指标,它可以帮助我们更好地理解模型在验证集上的表现。本文介绍了如何使用pytorch框架,利用训练好后的模型权重,在验证集上输出分类的混淆矩阵,并保存错误图片的方法。 首先,我们需要准备一个pytorch框架的模型,并将模

    2024年02月13日
    浏览(40)
  • 请描述TensorFlow中的Saver对象及其用途。在TensorFlow中,如何保存和加载训练好的模型?

    请描述TensorFlow中的Saver对象及其用途。 TensorFlow中的Saver对象是一个用于保存和加载模型参数的类。Saver对象在TensorFlow中扮演着至关重要的角色,尤其是在模型训练和部署的过程中。 Saver对象的主要用途如下: 模型保存:在训练神经网络模型的过程中,我们通常需要保存模型

    2024年04月15日
    浏览(47)
  • 【论文】模型大小计算方式(或者叫做权重大小/体积?)单位是MB

    搞不懂,论文里面的 模型大小(Modelsize) 到底是啥?感觉各有各的说法 就单纯的网络结构的大小? 那就可以说成是:网络结构定义好了就是一个模型,可用于训练 还是整个权重(网络结构+参数)的大小? 可以说成:整个权重文件包含了网络结构和参数,那么这个训练好的权

    2024年02月05日
    浏览(38)
  • 信息检索与数据挖掘 | (五)文档评分、词项权重计算及向量空间模型

    目录 📚词项频率及权重计算 🐇词项频率 🐇逆文档频率 🐇tf-idf权重计算 📚向量空间模型 🐇余弦相似度 🐇查询向量 🐇向量相似度计算 📚其他tf-idf权值计算方法 🐇tf的亚线性尺度变换方法 🐇基于最大值的tf归一化 🐇文档权值和查询权重机 我们需要一种方法分配一个

    2024年02月08日
    浏览(45)
  • 机器学习---使用 TensorFlow 构建神经网络模型预测波士顿房价和鸢尾花数据集分类

    1. 预测波士顿房价 1.1 导包 最后一行设置了TensorFlow日志的详细程度: tf.logging.DEBUG :最详细的日志级别,用于记录调试信息。 tf.logging.INFO :用于记录一般的信息性消息,比如训练过程中的指标和进度。 tf.logging.WARN :用于记录警告消息,表示可能存在潜在问题,但不会导致

    2024年02月08日
    浏览(47)
  • 人工智能(pytorch)搭建模型17-pytorch搭建ReitnNet模型,加载数据进行模型训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型17-pytorch搭建ReitnNet模型,加载数据进行模型训练与预测,RetinaNet 是一种用于目标检测任务的深度学习模型,旨在解决目标检测中存在的困难样本和不平衡类别问题。它是基于单阶段检测器的一种改进方法,通

    2024年02月15日
    浏览(96)
  • [paddle]paddleseg中eiseg加载模型参数的模型下载地址

    以下内容为2D图片标注模型下载及EISeg2D图片标注流程,具体如下: 在使用EISeg前,请先下载模型参数。EISeg开放了在COCO+LVIS、大规模人像数据、mapping_challenge,Chest X-Ray,MRSpineSeg,LiTS及百度自建质检数据集上训练的7个垂类方向模型,满足通用场景、人像场景、建筑物标注,医

    2024年02月07日
    浏览(41)
  • 第56步 深度学习图像识别:CNN梯度权重类激活映射(TensorFlow)

    一、写在前面 类激活映射(Class Activation Mapping,CAM)和梯度权重类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM) 是两种可视化深度学习模型决策过程的技术。他们都是为了理解模型的决策过程,特别是对于图像分类任务,它们可以生成一种热力图,这种图可以突出显

    2024年02月13日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包