图像的阈值处理
demo1
# 二值化处理黑白渐变图
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
# 二值化处理黑白渐变图
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, dst2 = cv2.threshold(img, 210, 255, cv2.THRESH_BINARY)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
# 二值化处理黑白渐变图
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, dst2 = cv2.threshold(img, 210,150, cv2.THRESH_BINARY)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
# 反二值化处理
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, dst2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
# 零处理---低于阈值0处理
import cv2
img = cv2.imread("./img.png", 1)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imwrite("./myimg.jpg", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
# 零处理---高于阈值0处理
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imwrite("./myimg.jpg", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
# 截断处理---大于阈值阈值处理
import cv2
img = cv2.imread("./img.png")
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
athdMEAM = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 3)
athdGAUS = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 3)
cv2.imshow("athdMEAM", athdMEAM)
cv2.imshow("athdGAUS", athdGAUS)
# cv2.imwrite("./myimg.jpg", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo8
# OTsu方法
import cv2
img = cv2.imread("./img.png", 1)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t1, dst1 = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.putText(dst1, "best threshold" + str(t1), (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
cv2.imshow("dst1", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
文章来源地址https://www.toymoban.com/news/detail-658670.html
文章来源:https://www.toymoban.com/news/detail-658670.html
到了这里,关于open cv学习 (五) 图像的阈值处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!