信息熵,信息增益,增益率的理解

这篇具有很好参考价值的文章主要介绍了信息熵,信息增益,增益率的理解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这个是全部文档目录

西瓜数据集D如下:

编号 色泽 根蒂 敲声 纹理 脐部 触感 好瓜
1 青绿 蜷缩 浊响 清晰 凹陷 硬滑
2 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑
3 乌黑 蜷缩 浊响 清晰 凹陷 硬滑
4 青绿 蜷缩 沉闷 清晰 凹陷 硬滑
5 浅白 蜷缩 浊响 清晰 凹陷 硬滑
6 青绿 稍蜷 浊响 清晰 稍凹 软粘
7 乌黑 稍蜷 浊响 稍糊 稍凹 软粘
8 乌黑 稍蜷 浊响 清晰 稍凹 硬滑
9 乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑
10 青绿 硬挺 清脆 清晰 平坦 软粘
11 浅白 硬挺 清脆 模糊 平坦 硬滑
12 浅白 蜷缩 浊响 模糊 平坦 软粘
13 青绿 稍蜷 浊响 稍糊 凹陷 硬滑
14 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑
15 乌黑 稍蜷 浊响 清晰 稍凹 软粘
16 浅白 蜷缩 浊响 模糊 平坦 硬滑
17 青绿 蜷缩 沉闷 稍糊 稍凹 硬滑

信息熵: 描述信息的混乱程度,越接近1越混乱(纯度越低),0则不混乱(纯度越高)

  • 信息熵是描述集合D的混乱程度(纯度)的值
  1. 以西瓜数据集为例,前7列(包含编号列)均为属性列,不是划分类别的指标,此例上一个瓜是否为好瓜是判断类别的唯一标准,则按照好瓜(是),好瓜(否)分为2类,即二分类问题
  2. 故D的信息熵仅由最后一列(好瓜)进行计算
  3. 简单看来:
  • 好瓜的比例:(记为P(好瓜));
  • 坏瓜的比例:(记为P(坏瓜)),
  • 进行一次对比,最混乱情况也就是各一半,纯度最高情况则全部是好瓜/坏瓜.
  1. 如出现多个类别,则每个类别占比相同时最混乱,只有一个类别数据时纯度最高
  2. 举例说明
    • (例1) 情况1.2的纯度大于情况1.1
      ( 情况 1.1 ) : P 好瓜 = 1 2 , P 坏瓜 = 1 2 (情况1.1):P_{ 好瓜} = \frac12,P_{坏瓜} = \frac12 (情况1.1):P好瓜=21,P坏瓜=21
      ( 情况 1.2 ) : P 好瓜 = 1 10 , P 坏瓜 = 9 10 (情况1.2):P_{ 好瓜} = \frac1{10},P_{坏瓜} = \frac9{10} (情况1.2):P好瓜=101,P坏瓜=109
    • (例2) 情况2.2的纯度大于情况2.1
      ( 情况 2.1 ) : P 好瓜 = 2 10 , P 坏瓜 = 8 10 (情况2.1):P_{ 好瓜} = \frac2{10},P_{坏瓜} = \frac8{10} (情况2.1):P好瓜=102,P坏瓜=108
      ( 情况 2.2 ) : P 好瓜 = 1 10 , P 坏瓜 = 9 10 (情况2.2):P_{ 好瓜} = \frac1{10},P_{坏瓜} = \frac9{10} (情况2.2):P好瓜=101,P坏瓜=109
    • 这样看来,在二分类问题中,取每个情况取最大的pk,比较大小,越大的纯度越高即可
    • 但是三分类问题就会有点问题
    • (例3) 情况3.2的纯度大于情况3.1
      ( 情况 3.1 ) : P 1 = 6 10 , P 2 = 2 10 , P 3 = 2 10 (情况3.1):P_1 = \frac6{10},P_2 = \frac2{10},P_3 = \frac2{10} (情况3.1):P1=106,P2=102,P3=102
      ( 情况 3.2 ) : P 1 = 6 10 , P 2 = 3 10 , P 3 = 1 10 (情况3.2):P_1 = \frac6{10},P_2 = \frac3{10},P_3 = \frac1{10} (情况3.2):P1=106,P2=103,P3=101
  3. 在例3的情况下,仅仅比较最大值6/10都是一样的,那么就需要比较第二大的值,3/10>2/10,故3.2的纯度大于情况3.1
  4. 由此可见,比较两个样本D信息熵的方法有了
  5. 但是不太方便,如果要用一个值来量化纯度(混乱程度),思路很清晰,同一个情况(一个集合D)中的分类占比越大,则对纯度程度的贡献就越大.即在(情况3.2)中 6/10的纯度意义 > 3/10 > 1/10
  6. 使用log函数可以实现8提到的要求.pk值越小,则log(pk)会更小.选用以2为底的对数函数,故当前样本集合D中第k类样本所占比例为pk(k=1,2,3,…,|y|),则D的信息熵为:
    E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k Ent(D)=k=1ypklog2pk

信息增益: 使用某个属性a对样本集D进行划分所能获得的纯度提升程度

  1. 计算信息增益的目的,是选出一个属性,可以最大的划分数据
  2. 则:
    信息增益 = 混乱程度 − 使用 a 进行划分后的混乱程度 信息增益 = 混乱程度 - 使用a进行划分后的混乱程度 信息增益=混乱程度使用a进行划分后的混乱程度
  3. 则:
    使用 a 进行划分后的混乱程度 = 即每个子集的混乱程度乘以各自的权重之和 使用a进行划分后的混乱程度 = 即每个子集的混乱程度乘以各自的权重之和 使用a进行划分后的混乱程度=即每个子集的混乱程度乘以各自的权重之和
  4. 又混乱程度可以使用信息熵Ent(D)进行计算
  5. 则可以推导,计算公式为:
    G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a) = Ent(D) - \sum\limits _{v=1}^V \frac{|Dv|}{|D|}Ent(D^v) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)
  • 注:
    ∣ D ∣ 即表示集合 D 中的元素个数 |D| 即表示集合D中的元素个数 D即表示集合D中的元素个数

以西瓜数据集举例说明

  • D包含若干属性,若使用某个属性a(即样本中的某列,例如色泽)对D进行划分,将D划分为多个子集
  • 以西瓜数据为例,如使用属性色泽进行划分,则一共有3个属性值,则将全部数据划分为3个子集,即:
    D 按照色泽划分 = D 青绿 ∪ D 乌黑 ∪ D 浅白 D_{按照色泽划分} = D_{青绿} \cup D_{乌黑} \cup D_{浅白} D按照色泽划分=D青绿D乌黑D浅白
  • 故a在D上的信息增益为:
    G a i n ( D , 色泽 ) = E n t ( D ) − ( ∣ D 青绿 ∣ ∣ D ∣ E n t ( D 青绿 ) + ∣ D 乌黑 ∣ ∣ D ∣ E n t ( D 乌黑 ) + ∣ D 浅白 ∣ ∣ D ∣ E n t ( D 浅白 ) ) Gain(D,{色泽}) = Ent(D) - (\frac{|D_{青绿}|}{|D|}Ent(D_{青绿}) +\frac{|D_{乌黑}|}{|D|}Ent(D_{乌黑})+ \frac{|D_{浅白}|}{|D|}Ent(D_{浅白}) ) Gain(D,色泽)=Ent(D)(DD青绿Ent(D青绿)+DD乌黑Ent(D乌黑)+DD浅白Ent(D浅白))
  • 可以看出,属性(色泽)对样本集D进行划分所能获得的纯度提升程度即为:Gain(D,色泽). 如每次都选择提升程度最大的一个,则决策树的分支越少.

文章来源地址https://www.toymoban.com/news/detail-659252.html

到了这里,关于信息熵,信息增益,增益率的理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【人工智能】监督学习、分类问题、决策树、信息增益

    【人工智能】监督学习、分类问题、决策树、信息增益

    什么是决策树 —— 基本概念 非叶节点:一个属性上的测试,每个分枝代表该测试的输出 叶节点:存放一个类标记 规则:从根节点到叶节点的一条属性取值路径 模型训练:从已有数据中生成一棵决策树 分裂数据的特征,寻找决策类别的路径 相同的数据,根据不同的特征顺

    2024年02月16日
    浏览(37)
  • 【海量数据挖掘/数据分析】之 决策树模型(决策树模型、决策树构成、决策树常用算法、决策树性能要求、信息增益、信息增益计算公式、决策树信息增益计算实例)

    【海量数据挖掘/数据分析】之 决策树模型(决策树模型、决策树构成、决策树常用算法、决策树性能要求、信息增益、信息增益计算公式、决策树信息增益计算实例)

    目录 【海量数据挖掘/数据分析】之 决策树模型(决策树模型、决策树构成、决策树常用算法、决策树性能要求、信息增益、信息增益计算公式、决策树信息增益计算实例) 一、决策树模型 1、常用算法 2、属性划分策略 3、其他算法 三、决策树算法性能要求 四、 决策树模型

    2024年02月13日
    浏览(9)
  • 信息增益-决策树

    信息增益-决策树

    表8.1给出的是带有标记类的元组的训练集D; 类标号属性 buys_computer有两个不同值:{yes, no} 设 类 C1 → rightarrow → yes,C2 → rightarrow → no; 已知:C1包含9个元组,C2包含5个元组; age:{‘youth’, ‘middle_aged’, ‘senior’} youth middle_aged senior yes 2 4 3 no 3 0 2 对于 y o u t h youth yo u

    2024年03月19日
    浏览(8)
  • 决策树分类算法(一)(信息熵,信息增益,基尼指数计算)

    决策树分类算法(一)(信息熵,信息增益,基尼指数计算)

    觉得有用的请先点赞后收藏!不要只收藏不点赞! 例子: : I ( x ) = log ⁡ 2 1 p = − log ⁡ 2 p I(x)=log_{2}{frac{1}{p}}=-log_{2}{p} I ( x ) = lo g 2 ​ p 1 ​ = − lo g 2 ​ p 假设中国足球队和巴西足球队曾经有过8次比赛,其中中国队胜1次。以U表示未来的中巴比赛中国队胜的事件,那么U的先

    2024年01月16日
    浏览(7)
  • 决策树的划分依据之:信息增益率

    决策树的划分依据之:信息增益率

    在上面的介绍中,我们有意忽略了\\\"编号\\\"这一列.若把\\\"编号\\\"也作为一个候选划分属性,则根据信息增益公式可计算出它的信息增益为 0.9182,远大于其他候选划分属性。 计算每个属性的信息熵过程中,我们发现,该属性的值为0, 也就是其信息增益为0.9182. 但是很明显这么分类,最后

    2024年02月14日
    浏览(13)
  • 决策树之用信息增益选择最优特征

    决策树之用信息增益选择最优特征

    决策树之用信息增益选择最优特征 熵 ​ 熵的定义: 熵(shāng),热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量。 在决策树中,信息增益是由熵构建而成,表示的是[随机变量的不确定性],不确定性越大,代表着熵越大。随机变量的取值

    2024年02月01日
    浏览(10)
  • 信息熵与信息增益在决策树生成中的使用

    信息熵与信息增益在决策树生成中的使用

        决策树是机器学习算法的一种,它主要对给定数据集合根据相关属性生成一个类似树结构的一种决策机制。     生成树结构,其实可以很随便,只要根据特征值的分支做分叉,把所有的特征遍历完成,这棵树就是一颗决策树。但是要生成一个最优决策树,我们需要选择合

    2024年02月16日
    浏览(8)
  • 决策树:理解机器学习中的关键算法

    决策树:理解机器学习中的关键算法

    决策树是一种流行而强大的机器学习算法,它从数据中学习并模拟决策过程,以便对新的未知数据做出预测。由于其直观性和易理解性,决策树成为了分类和回归任务中的首选算法之一。在本文中,我们将深入探讨决策树的工作原理、如何构建决策树、它们的优缺点,以及在

    2024年01月18日
    浏览(10)
  • 机器学习-学习率:从理论到实战,探索学习率的调整策略

    机器学习-学习率:从理论到实战,探索学习率的调整策略

    本文全面深入地探讨了机器学习和深度学习中的学习率概念,以及其在模型训练和优化中的关键作用。文章从学习率的基础理论出发,详细介绍了多种高级调整策略,并通过Python和PyTorch代码示例提供了实战经验。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构

    2024年02月05日
    浏览(7)
  • 决策树剪枝:解决模型过拟合【决策树、机器学习】

    决策树是一种强大的机器学习算法,用于解决 分类 和 回归 问题。决策树模型通过树状结构的决策规则来进行预测,但在构建决策树时,常常会出现过拟合的问题,即模型在训练数据上表现出色,但在未见过的数据上表现不佳。 过拟合的威胁 在机器学习中, 过拟合 是一个

    2024年02月07日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包