opencv运动目标检测-背景建模

这篇具有很好参考价值的文章主要介绍了opencv运动目标检测-背景建模。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景建模

帧差法

由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。

opencv运动目标检测-背景建模,opencv,人工智能,计算机视觉

帧差法非常简单,但是会引入噪音和空洞问题

混合高斯模型

在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一定的鲁棒性。最后通过对一个有树枝摇摆的动态背景进行前景检测,取得了较好的效果。

在视频中对于像素点的变化情况应当是符合高斯分布

opencv运动目标检测-背景建模,opencv,人工智能,计算机视觉

背景的实际分布应当是多个高斯分布混合在一起,每个高斯模型也可以带有权重

 

 opencv运动目标检测-背景建模,opencv,人工智能,计算机视觉文章来源地址https://www.toymoban.com/news/detail-659253.html

到了这里,关于opencv运动目标检测-背景建模的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 迈向多模态AGI之开放世界目标检测 | 人工智能

    作者: 王斌 谢春宇 冷大炜 引言 目标检测是计算机视觉中的一个非常重要的基础任务,与常见的的图像分类/识别任务不同,目标检测需要模型在给出目标的类别之上,进一步给出目标的位置和大小信息,在CV三大任务(识别、检测、分割)中处于承上启下的关键地位。当前

    2024年02月16日
    浏览(46)
  • OpenCV实例(九)基于深度学习的运动目标检测(二)YOLOv2概述

    对YOLO存在的不足,业界又推出了YOLOv2。YOLOv2主要通过以下方法对模型进行优化: (1)使用Batch Normalization方法对模型中每一个卷积层的输入进行归一化,缓解梯度消失,加快收敛速度,减少了训练时间,同时提高了平均检测准确率。 (2)增加Anchors机制,借助训练集的边框标签值

    2024年02月12日
    浏览(48)
  • 人工智能 - 目标检测:发展历史、技术全解与实战

    本文全面回顾了目标检测技术的演进历程,从早期的滑动窗口和特征提取方法到深度学习的兴起,再到YOLO系列和Transformer的创新应用。通过对各阶段技术的深入分析,展现了计算机视觉领域的发展趋势和未来潜力。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架

    2024年02月05日
    浏览(57)
  • OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体

    目标检测,粗略地说就是输入图片/视频,经过处理后得到目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度。前面我们阐述了不少理论知识,现在需要动手实战了。对于初学者来说,自己实现YOLO算法不太现实,幸运的是OpenCV的DNN(Deep Neur

    2024年02月12日
    浏览(57)
  • 人工智能TensorFlow PyTorch物体分类和目标检测合集【持续更新】

    1. 基于TensorFlow2.3.0的花卉识别 基于TensorFlow2.3.0的花卉识别Android APP设计_基于安卓的花卉识别_lilihewo的博客-CSDN博客 2. 基于TensorFlow2.3.0的垃圾分类 基于TensorFlow2.3.0的垃圾分类Android APP设计_def model_load(img_shape=(224, 224, 3)_lilihewo的博客-CSDN博客   3. 基于TensorFlow2.3.0的果蔬识别系统的

    2024年02月09日
    浏览(62)
  • AI一叶知秋:从目标检测部署浅谈人工智能发展

    笔者写这篇文章也有讨巧之嫌,仅以个人视角分享一些看法,主要从实践部署来谈谈近两年来计算机视觉模型的变化,不过AI是一个宏大的话题,每个人定义的人工智能就不一样,我们先来探讨一下何为人工智能。百度百科中是这样定义的: 人工智能是研究、开发用于模拟、

    2024年02月02日
    浏览(93)
  • 人工智能学习与实训笔记(三):神经网络之目标检测问题

    人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 目录 三、目标检测问题 3.1 目标检测基础概念 3.1.1 边界框(bounding box) 3.1.2 锚框(Anchor box) 3.1.3 交并比 3.2 单阶段目标检测模型YOLOv3 3.2.1 YOLOv3模型设计思想 3.2.2 YOLOv3模型训练过程 3.2.3 如何建立输出特征图与预

    2024年02月20日
    浏览(62)
  • YOLO目标检测——真实和人工智能生成的合成图像数据集下载分享

    YOLO真实和人工智能生成的合成图像数据集,真实场景的高质量图片数据,图片格式为jpg,数据场景丰富。可用于检测图像是真实的还是由人工智能生成。 数据集点击下载 :YOLO真实和人工智能生成的合成图像数据集+120000图片+数据说明.rar

    2024年02月10日
    浏览(52)
  • 基于人工智能与边缘计算Aidlux的鸟类检测驱赶系统(可修改为coco 80类目标检测)

    ●项目名称 基于人工智能与边缘计算Aidlux的鸟类检测驱赶系统(可修改为coco 80类目标检测) ●项目简介 本项目在Aidlux上部署鸟类检测驱赶系统,通过视觉技术检测到有鸟类时,会进行提示。并可在源码上修改coco 80类目标检测索引直接检测其他79类目标,可以直接修改、快速

    2024年02月12日
    浏览(56)
  • 人工智能学习07--pytorch15(前接pytorch10)--目标检测:FPN结构详解

    backbone:骨干网络,例如cnn的一系列。(特征提取) (a)特征图像金字塔 检测不同尺寸目标。 首先将图片缩放到不同尺度,针对每个尺度图片都一次通过算法进行预测。 但是这样一来,生成多少个尺度就要预测多少次,训练效率很低。 (b)单一特征图 faster rcnn所采用的一种方式

    2023年04月12日
    浏览(74)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包