状态空间平均建模——Flyback

这篇具有很好参考价值的文章主要介绍了状态空间平均建模——Flyback。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

状态空间平均建模——Flyback

假设变换器工作再CCM模式下,电路如下图所示:

小信号建模的假设,硬件工程

求平均变量

开关变换器再一个周期内有多个状态,如在CCM模式下根据开关是否闭合可分为两个状态:开关闭合状态1、开关打开状态2。针对第n个状态的等效电路列写对应的状态方程和输出方程如下:

X ˙ n ( t ) = A n x ( t ) + B n u ( t ) \dot{\textbf{X} }_n(t)=\textbf{A}_n\textbf{x}(t)+\textbf{B}_n\textbf{u}(t) X˙n(t)=Anx(t)+Bnu(t)

y n ( t ) = C n x ( t ) + E n u ( t ) \textbf{y}_n(t)=\textbf{C}_n\textbf{x}(t)+\textbf{E}_n\textbf{u}(t) yn(t)=Cnx(t)+Enu(t)

其中:

1. x ( t ) \textbf{x}(t) x(t)为状态向量,选取电感电流和电容电压为状态变量: i ( t ) i(t) i(t), v ( t ) v(t) v(t)

2. u ( t ) \textbf{u}(t) u(t)为输入向量,为网络的独立输入量,如电源电压,二极管压降(可以看成电压源)这里为: v g ( t ) v_g(t) vg(t), v D ( t ) v_D(t) vD(t)

3. x ˙ ( t ) \dot{\textbf{x}}(t) x˙(t)为状态向量的一阶导数: d i ( t ) d t \frac{di(t)}{dt} dtdi(t), d v ( t ) d t \frac{dv(t)}{dt} dtdv(t)

4. y ( t ) \textbf{y}(t) y(t)为输出向量,可以自由选择受控变量,主要是输出电感电流和输出电容电压

5.A,B为状态矩阵和输入矩阵

6.C,E为输出矩阵和传输矩阵

为了消除开关纹波影响,对状态变量 x n ( t ) \textbf{x}_n(t) xn(t)在一个开关周期内取平均,建立平均状态变量的状态方程如下:

< x ( t ) > T s = 1 T s ∫ t t + T s x ( τ ) d τ <\textbf{x}(t)>_{T_s}=\frac{1}{T_s}\int^{t+T_s}_tx(\tau)d\tau <x(t)>Ts=Ts1tt+Tsx(τ)dτ

因此得到:
< x ˙ ( t ) > T s = d < x ( t ) > T s d t = d d t ( 1 T s ∫ t t + T s x ( τ ) d τ ) = 1 T s ∫ t t + T s ( d x ( τ ) d τ ) d τ = 1 T s ∫ t t + T s x ˙ ( τ ) d τ = 1 T s ∫ t t + d T s x ˙ ( τ ) d τ + 1 T s ∫ t + d T s t + T s x ˙ ( τ ) d τ = 1 T s ∫ t t + d T s [ A 1 x ( τ ) + B 1 u ( τ ) ] d τ + 1 T s ∫ t + d T s t + T s [ A 2 x ( τ ) + B 2 u ( τ ) ] d τ ≈ 1 T s ∫ t t + d T s [ A 1 < x ( τ ) > T s + B 1 < u ( τ ) > T s ] d τ +    1 T s ∫ t + d T s t + T s [ A 2 < x ( τ ) > T s + B 2 < u ( τ ) > T s ] d τ ≈ 1 T s { [ A 1 < x ( τ ) > T s + B 1 < u ( τ ) > T s ] d T s + [ A 2 < x ( τ ) > T s + B 2 < u ( τ ) > T s ] ( 1 − d ) T s } = [ d ( t ) A 1 + d ′ ( t ) A 2 ] < x ( t ) > T s + [ d ( t ) B 1 + d ′ ( t ) B 2 ] < u ( t ) > T s \begin{align} \nonumber <\dot{\textbf{x}}{(t)}>_{T_s} &= \frac{d<\textbf{x}(t)>_{T_s}}{dt}\\ \nonumber &=\frac{d}{dt}(\frac{1}{T_s}\int^{t+T_s}_tx(\tau) d \tau)\\ \nonumber &=\frac{1}{T_s}\int^{t+T_s}_t (\frac{d\textbf{x}(\tau)}{d\tau}) d\tau \\ \nonumber &=\frac{1}{T_s}\int^{t+T_s}_t \dot{\textbf{x}}{(\tau)} d\tau \\ \nonumber &=\frac{1}{T_s}\int^{t+dT_s}_t \dot{\textbf{x}}{(\tau)} d\tau + \frac{1}{T_s}\int^{t+T_s}_{t+dT_s} \dot{\textbf{x}}{(\tau)} d\tau \\ \nonumber &=\frac{1}{T_s}\int^{t+dT_s}_t [\textbf{A}_1 \textbf{x}(\tau)+\textbf{B}_1\textbf{u}(\tau)] d \tau + \frac{1}{T_s}\int^{t+T_s}_{t+dT_s} [\textbf{A}_2 \textbf{x}(\tau)+\textbf{B}_2\textbf{u}(\tau)] d \tau \\ \nonumber &\approx \frac{1}{T_s}\int^{t+dT_s}_t [\textbf{A}_1 <\textbf{x}(\tau)>_{T_s} + \textbf{B}_1 <\textbf{u}(\tau)>_{T_s}] d \tau +\\ & \ \ \frac{1}{T_s}\int^{t+T_s}_{t+dT_s} [\textbf{A}_2 <\textbf{x}(\tau)>_{T_s}+\textbf{B}_2 <\textbf{u}(\tau)>_{T_s}] d \tau \\ \nonumber & \approx \frac{1}{T_s}\{ [\textbf{A}_1 <\textbf{x}(\tau)>_{T_s} + \textbf{B}_1 <\textbf{u}(\tau)>_{T_s}]dT_s + [\textbf{A}_2 <\textbf{x}(\tau)>_{T_s}+\textbf{B}_2 <\textbf{u}(\tau)>_{T_s}](1-d)T_s \} \\ \nonumber &= [d(t)\textbf{A}_1 + d^\prime (t) \textbf{A}_2 ]<\textbf{x}(t)>_{T_s} + [d(t)\textbf{B}_1 + d^\prime(t) \textbf{B}_2 ]<\textbf{u}(t)>_{T_s} \end{align} <x˙(t)>Ts=dtd<x(t)>Ts=dtd(Ts1tt+Tsx(τ)dτ)=Ts1tt+Ts(dτdx(τ))dτ=Ts1tt+Tsx˙(τ)dτ=Ts1tt+dTsx˙(τ)dτ+Ts1t+dTst+Tsx˙(τ)dτ=Ts1tt+dTs[A1x(τ)+B1u(τ)]dτ+Ts1t+dTst+Ts[A2x(τ)+B2u(τ)]dτTs1tt+dTs[A1<x(τ)>Ts+B1<u(τ)>Ts]dτ+  Ts1t+dTst+Ts[A2<x(τ)>Ts+B2<u(τ)>Ts]dτTs1{[A1<x(τ)>Ts+B1<u(τ)>Ts]dTs+[A2<x(τ)>Ts+B2<u(τ)>Ts](1d)Ts}=[d(t)A1+d(t)A2]<x(t)>Ts+[d(t)B1+d(t)B2]<u(t)>Ts
同理可得:

< y ( t ) > T s = [ d ( t ) C 1 + d ′ C 2 ] < x ( t ) > T s + [ d ( t ) E 1 + d ′ E 2 ] < u ( t ) > T s <\textbf {y} (t)>_{T_s} = [d(t)\textbf{C}_1 + d^\prime \textbf{C}_2 ]<\textbf{x}(t)>_{T_s} + [d(t)\textbf{E}_1 + d^\prime \textbf{E}_2 ]<\textbf{u}(t)>_{T_s} <y(t)>Ts=[d(t)C1+dC2]<x(t)>Ts+[d(t)E1+dE2]<u(t)>Ts

在Flyback电路中有:

x ( t ) = [ i ( t ) v ( t ) ] \textbf{x}(t)= \begin{bmatrix} i(t) \\v(t) \end{bmatrix} x(t)=[i(t)v(t)]

u ( t ) = [ v g ( t ) v D ( t ) ] \textbf{u}(t)= \begin{bmatrix} v_g(t) \\v_D(t) \end{bmatrix} u(t)=[vg(t)vD(t)]

y ( t ) = [ i g ( t ) v ( t ) ] \textbf{y}(t)= \begin{bmatrix} i_g(t) \\ v(t) \end{bmatrix} y(t)=[ig(t)v(t)]

其中, i ( t ) i(t) i(t)为电感流过的电流, V ( t ) V(t) V(t)为输出电压, v g ( t ) v_g(t) vg(t)为输入电压, i g ( t ) i_g(t) ig(t)为输入电流, V D ( t ) V_D(t) VD(t)为二极管的压降

工作状态一,开关闭合

开关闭合示意图如下所示:

小信号建模的假设,硬件工程

此时开关关闭,反激变压器副边侧电压为上负下正,二极管处于反向截至状态则: i g ( t ) = i ( t ) i_g(t)=i(t) ig(t)=i(t)对电感和电容列些微分方程,有:

v L = v g − i ∗ R L = L d i d t ⟶ d i d t = v g L − R L L ∗ i v_L=v_g-i*R_L=L\frac{di}{dt} \longrightarrow \frac{di}{dt}=\frac{v_g}{L} - \frac{R_L}{L}*i vL=vgiRL=Ldtdidtdi=LvgLRLi

i C = − V R = c d v d t ⟶ d v d t = − V R C i_C=-\frac{V}{R}=c\frac{dv}{dt} \longrightarrow \frac{dv}{dt} = -\frac{V}{RC} iC=RV=cdtdvdtdv=RCV

由此可得状态方程:

[ d i d t d v d t ] = [ − R L L 0 0 − 1 R C ] [ i ( t ) v ( t ) ] + [ 1 L 0 0 0 ] [ v g ( t ) v D ( t ) ] \begin{bmatrix} \frac{di}{dt} \\ \frac{dv}{dt} \end{bmatrix} =\begin{bmatrix} -\frac{R_L}{L} & 0 \\0 & -\frac{1}{RC} \end{bmatrix}\begin{bmatrix} i(t) \\v(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{L} & 0\\0 &0 \end{bmatrix} \begin{bmatrix} v_g(t) \\v_D(t) \end{bmatrix} [dtdidtdv]=[LRL00RC1][i(t)v(t)]+[L1000][vg(t)vD(t)]

输出方程:

[ i g v ] = [ 1 0 0 1 ] [ i ( t ) v ( t ) ] + [ 0 0 0 0 ] [ v g ( t ) v D ( t ) ] \begin{bmatrix} i_g \\ v \end{bmatrix} =\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}\begin{bmatrix} i(t) \\v(t) \end{bmatrix}+ \begin{bmatrix} 0 &0 \\0 &0 \end{bmatrix} \begin{bmatrix} v_g(t) \\v_D(t) \end{bmatrix} [igv]=[1001][i(t)v(t)]+[0000][vg(t)vD(t)]

由此可得矩阵 A 1 \textbf{A}_1 A1 B 1 \textbf{B}_1 B1 C 1 \textbf{C}_1 C1 E 1 \textbf{E}_1 E1为:

A 1 = [ − R L L 0 0 − 1 R C ] \textbf{A}_1=\begin{bmatrix} -\frac{R_L}{L} & 0 \\0 & -\frac{1}{RC} \end{bmatrix} A1=[LRL00RC1]

B 1 = [ 1 L 0 0 0 ] \textbf{B}_1= \begin{bmatrix} \frac{1}{L} & 0 \\0 &0 \end{bmatrix} B1=[L1000]

C 1 = [ 1 0 0 1 ] \textbf{C}_1=\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} C1=[1001]

E 1 = [ 0 0 0 0 ] \textbf{E}_1=\begin{bmatrix} 0 & 0 \\0 &0 \end{bmatrix} E1=[0000]

工作状态二,开关断开有:

开关闭合电路示意图如下所示:

小信号建模的假设,硬件工程

此时,开关断开,电感电流维持不变,电感电压方向突变,上负下正,反激变压器原边侧电压上负下正,副边侧电压上正下负,二极管导通,导通压降为 V D V_D VD i g = 0 i_g=0 ig=0

对变压器有原边侧电压: V s = 1 n ∗ V p = 1 n ( v − v D ) V_s=\frac{1}{n}*V_p=\frac{1}{n}(v-v_D) Vs=n1Vp=n1(vvD)

电流关系: i s = i = n i p i_s=i=ni_p is=i=nip

对电感和电容列微分方程:

v L = V s + R L ∗ i = 1 n ( v − v D ) + R L ∗ i = − L d i d t ⟶ d i d t = − R L L ∗ i − V n L + V D n L v_L=V_s+R_L*i=\frac{1}{n}(v-v_D) +R_L*i=-L \frac{di}{dt} \longrightarrow \frac{di}{dt}= -\frac{R_L}{L}*i-\frac{V}{nL}+\frac{V_D}{nL} vL=Vs+RLi=n1(vvD)+RLi=Ldtdidtdi=LRLinLV+nLVD

i C = 1 n i − v R = C d v d t ⟶ d v d t = 1 n C i − 1 R C v i_C=\frac{1}{n}i-\frac{v}{R}=C\frac{dv}{dt} \longrightarrow \frac{dv}{dt}=\frac{1}{nC}i-\frac{1}{RC}v iC=n1iRv=Cdtdvdtdv=nC1iRC1v

由此可得状态方程:

[ d i d t d v d t ] = [ − R L L − 1 n L 1 n C − 1 R C ] [ i ( t ) v ( t ) ] + [ 0 1 n L 0 0 ] [ v g ( t ) v D ( t ) ] \begin{bmatrix} \frac{di}{dt} \\ \frac{dv}{dt} \end{bmatrix} =\begin{bmatrix} -\frac{R_L}{L} & -\frac{1}{nL} \\ \frac{1}{nC} & -\frac{1}{RC} \end{bmatrix} \begin{bmatrix} i(t) \\v(t) \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{nL} \\0 & 0 \end{bmatrix} \begin{bmatrix} v_g(t) \\v_D(t) \end{bmatrix} [dtdidtdv]=[LRLnC1nL1RC1][i(t)v(t)]+[00nL10][vg(t)vD(t)]

输出方程:

[ i g v ] = [ 0 0 0 1 ] [ i ( t ) v ( t ) ] + [ 0 0 0 0 ] [ v g ( t ) v D ( t ) ] \begin{bmatrix} i_g \\ v \end{bmatrix} =\begin{bmatrix} 0 & 0 \\0 & 1 \end{bmatrix}\begin{bmatrix} i(t) \\v(t) \end{bmatrix}+ \begin{bmatrix} 0 &0 \\0 &0 \end{bmatrix} \begin{bmatrix} v_g(t) \\v_D(t) \end{bmatrix} [igv]=[0001][i(t)v(t)]+[0000][vg(t)vD(t)]

因此得到矩阵 A 2 \textbf{A}_2 A2 B 2 \textbf{B}_2 B2 C 2 \textbf{C}_2 C2 E 2 \textbf{E}_2 E2

A 2 = [ − R L L − 1 n L 1 n C − 1 R C ] \textbf{A}_2=\begin{bmatrix} -\frac{R_L}{L} & -\frac{1}{nL} \\ \frac{1}{nC} & -\frac{1}{RC} \end{bmatrix} A2=[LRLnC1nL1RC1]

$\textbf{B}_2= \begin{bmatrix} 0 & \frac{1}{nL} \0 & 0 \end{bmatrix} $

C 2 = [ 0 0 0 1 ] \textbf{C}_2=\begin{bmatrix} 0 & 0 \\0 & 1 \end{bmatrix} C2=[0001]

E 2 = [ 0 0 0 0 ] \textbf{E}_2=\begin{bmatrix} 0 & 0 \\0 &0 \end{bmatrix} E2=[0000]

求静态工作点

A = d A 1 + d ′ A 2 = [ R L L − 1 − d n L 1 − d n C 1 R C ] \textbf{A}=d\textbf{A}_1+d ^\prime\textbf{A}_2= \begin{bmatrix} \frac{R_L}{L} & -\frac{1-d}{nL} \\ \frac{1-d}{nC} & \frac{1}{RC} \end{bmatrix} A=dA1+dA2=[LRLnC1dnL1dRC1]

B = d B 1 + d ′ B 2 = [ d L 1 − d n L 0 0 ] \textbf{B}=d\textbf{B}_1+d ^\prime\textbf{B}_2 = \begin{bmatrix} \frac{d}{L} & \frac{1-d}{nL} \\0 & 0 \end{bmatrix} B=dB1+dB2=[Ld0nL1d0]

C = d C 1 + d ′ C 2 = [ d 0 0 1 ] \textbf{C}=d\textbf{C}_1+d ^\prime\textbf{C}_2 = \begin{bmatrix} d & 0 \\0 & 1 \end{bmatrix} C=dC1+dC2=[d001]

E = d E 1 + d ′ E 2 = [ 0 0 0 0 ] \textbf{E}=d\textbf{E}_1+d ^\prime\textbf{E}_2 = \begin{bmatrix} 0 & 0 \\0 & 0 \end{bmatrix} E=dE1+dE2=[0000]

等效电路

电感的平均值方程:

< v L > T S = L d < i ( t ) > T S d t = ( 1 − d ) ( V D − v ) n + d v g − R L i <v_L>_{T_S}=L\frac{d<i(t)>_{T_S}}{dt}=\frac{(1-d)(V_D-v)}{n}+ dv_g - R_Li <vL>TS=Ldtd<i(t)>TS=n(1d)(VDv)+dvgRLi

电容平均值方程:

< i C > T S = C d < v ( t ) > T s d t = 1 − d n i − v R <i_C>_{T_S}=C\frac{d<v(t)>_{T_s}}{dt}=\frac{1-d}{n}i-\frac{v}{R} <iC>TS=Cdtd<v(t)>Ts=n1diRv

稳态时一个周期内 < v L > T S = 0 <v_L>_{T_S}=0 <vL>TS=0, < i C > T S = 0 <i_C>_{T_S}=0 <iC>TS=0得到:

( 1 − d ) ( V D − v ) n + d v g − R L i = 0 \frac{(1-d)(V_D-v)}{n}+ dv_g - R_Li=0 n(1d)(VDv)+dvgRLi=0

1 − d n i − v R = 0 \frac{1-d}{n}i-\frac{v}{R}=0 n1diRv=0

可得等效电路:
小信号建模的假设,硬件工程

进一步用变压器等效得:

小信号建模的假设,硬件工程

分离扰动

为了得到开关变换器的等效电路和传递函数,需要分离出直流分量和扰动分量。小信号的传递函数实际上是对于扰动量的传递函数。

对平均向量做分解:

< x ( t ) > T S = x + x ^ ( t ) <{\textbf{x}}{(t)}>_{T_S}={\textbf{x}} +\hat{{\textbf{x}}}(t) <x(t)>TS=x+x^(t)

< x ˙ ( t ) > T S = x ˙ + x ˙ ^ ( t ) <\dot{\textbf{x}}{(t)}>_{T_S}=\dot{\textbf{x}} +\hat{\dot{\textbf{x}}}(t) <x˙(t)>TS=x˙+x˙^(t)

< u ( t ) > T S = u + u ^ ( t ) <{\textbf{u}}{(t)}>_{T_S}={\textbf{u}} +\hat{{\textbf{u}}}(t) <u(t)>TS=u+u^(t)

< y ( t ) > T S = y + y ^ ( t ) <{\textbf{y}}{(t)}>_{T_S}={\textbf{y}} +\hat{{\textbf{y}}}(t) <y(t)>TS=y+y^(t)

d ( t ) = D + d ^ ( t ) d(t)=D+\hat {d}(t) d(t)=D+d^(t)

d ′ ( t ) = 1 − d ( t ) = D ′ − d ^ ( t ) d^\prime(t)=1-d(t)=D^\prime -\hat{d}(t) d(t)=1d(t)=Dd^(t)

带入 < x ˙ ( t ) > T S <\dot{\textbf{x}}{(t)}>_{T_S} <x˙(t)>TS < y ( t ) > T s <\textbf {y} (t)>_{T_s} <y(t)>Ts表达式,得到:

< x ˙ ( t ) > T S = x ˙ + x ˙ ^ ( t ) = { [ D + d ^ ( t ) ] A 1 + [ 1 − ( D + d ^ ( t ) ) ] A 2 } { X + x ^ ( t ) } + { [ D + d ^ ( t ) ] B 1 + [ 1 − ( D + d ^ ( t ) ) ] B 2 } { U + u ^ ( t ) } = Ax + Bu + A x ^ ( t ) + B u ^ ( t ) + [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] d ^ ( t ) + ( A 1 − A 2 ) x ^ ( t ) d ^ ( t ) + ( B 1 − B 2 ) u ^ ( t ) d ^ ( t ) \begin{align} \nonumber <\dot{\textbf{x}}{(t)}>_{T_S} = & \dot{\textbf{x}} +\hat{\dot{\textbf{x}}}(t) \\ =& \nonumber \{ [D + \hat{d}(t)]A_1 +[1-(D+\hat d (t))]A_2\}\{ \textbf X + \hat{\textbf x}(t) \} \\ \nonumber & + \{ [D + \hat{d}(t)]B_1 +[1-(D+\hat d (t))]B_2\}\{ \textbf U + \hat{\textbf u}(t) \} \\ \nonumber =& \textbf{A}\textbf{x}+\textbf{B}\textbf{u} +\textbf{A} \hat{\textbf{x}}(t)+ \textbf{B} \hat{\textbf{u}}(t)+[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}]\hat{d}(t) \\ \nonumber & + (\textbf{A}_1-\textbf{A}_2)\hat{\textbf{x}}(t)\hat{d}(t)+(\textbf{B}_1-\textbf{B}_2)\hat{\textbf{u}}(t)\hat{d}(t) \end{align} <x˙(t)>TS===x˙+x˙^(t){[D+d^(t)]A1+[1(D+d^(t))]A2}{X+x^(t)}+{[D+d^(t)]B1+[1(D+d^(t))]B2}{U+u^(t)}Ax+Bu+Ax^(t)+Bu^(t)+[(A1A2)x+(B1B2)u]d^(t)+(A1A2)x^(t)d^(t)+(B1B2)u^(t)d^(t)

< y ( t ) > T S = y + y ^ ( t ) = { [ D + d ^ ( t ) ] C 1 + [ 1 − ( D + d ^ ( t ) ) ] C 2 } { X + x ^ ( t ) } + { [ D + d ^ ( t ) ] E 1 + [ 1 − ( D + d ^ ( t ) ) ] E 2 } { U + u ^ ( t ) } = Cx + Eu + C x ^ ( t ) + E u ^ ( t ) + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] d ^ ( t ) + ( C 1 − C 2 ) x ^ ( t ) d ^ ( t ) + ( E 1 − E 2 ) u ^ ( t ) d ^ ( t ) \begin{align} <{\textbf{y}}{(t)}>_{T_S}= &{\textbf{y}} +\hat{{\textbf{y}}}(t) \\ \nonumber =& \{ [D + \hat{d}(t)]C_1 +[1-(D+\hat d (t))]C_2\}\{ \textbf X + \hat{\textbf x}(t) \} \\ \nonumber & + \{ [D + \hat{d}(t)]E_1 +[1-(D+\hat d (t))]E_2\}\{ \textbf U + \hat{\textbf u}(t) \} \\ \nonumber =& \textbf{C}\textbf{x}+\textbf{E}\textbf{u} +\textbf{C} \hat{\textbf{x}}(t)+ \textbf{E} \hat{\textbf{u}}(t) +[(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}]\hat{d}(t) \\ \nonumber & + (\textbf{C}_1-\textbf{C}_2)\hat{\textbf{x}}(t)\hat{d}(t)+(\textbf{E}_1-\textbf{E}_2)\hat{\textbf{u}}(t)\hat{d}(t) \end{align} <y(t)>TS===y+y^(t){[D+d^(t)]C1+[1(D+d^(t))]C2}{X+x^(t)}+{[D+d^(t)]E1+[1(D+d^(t))]E2}{U+u^(t)}Cx+Eu+Cx^(t)+Eu^(t)+[(C1C2)x+(E1E2)u]d^(t)+(C1C2)x^(t)d^(t)+(E1E2)u^(t)d^(t)

忽略小信号二阶分量,对上式进行线性近似:

x ˙ + x ˙ ^ ( t ) = Ax + Bu + A x ^ ( t ) + B u ^ ( t ) + [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] d ^ ( t ) \dot{\textbf{x}} +\hat{\dot{\textbf{x}}}(t) =\textbf{A}\textbf{x}+\textbf{B}\textbf{u} +\textbf{A} \hat{\textbf{x}}(t)+ \textbf{B} \hat{\textbf{u}}(t)+[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}]\hat{d}(t) x˙+x˙^(t)=Ax+Bu+Ax^(t)+Bu^(t)+[(A1A2)x+(B1B2)u]d^(t)

y + y ^ ( t ) = Cx + Eu + C x ^ ( t ) + E u ^ ( t ) + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] d ^ ( t ) {\textbf{y}} +\hat{{\textbf{y}}}(t) = \textbf{C}\textbf{x}+\textbf{E}\textbf{u} +\textbf{C} \hat{\textbf{x}}(t)+ \textbf{E} \hat{\textbf{u}}(t) +[(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}]\hat{d}(t) y+y^(t)=Cx+Eu+Cx^(t)+Eu^(t)+[(C1C2)x+(E1E2)u]d^(t)

直流稳态方程

由此可得直流量表达式为:

x ˙ = Ax + Bu \dot{\textbf{x}}=\textbf{A}\textbf{x}+\textbf{B}\textbf{u} x˙=Ax+Bu

y = Cx + Eu \textbf{y}=\textbf{C}\textbf{x}+\textbf{E}\textbf{u} y=Cx+Eu

令稳态时直流分量 x \textbf{x} x为常数, x ˙ = 0 \dot{\textbf{x}}=0 x˙=0,则:

x = − A − 1 Bu \textbf{x}=-\textbf{A}^{-1}\textbf{B}\textbf{u} x=A1Bu

y = ( E − C A − 1 B ) u \textbf{y}=(\textbf{E}-\textbf{C}\textbf{A}^{-1}\textbf{B})\textbf{u} y=(ECA1B)u

扰动量的表达式为:
< x ˙ ^ ( t ) > T S = A x ^ ( t ) + B u ^ ( t ) + [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] d ^ ( t ) + ( A 1 − A 2 ) x ^ ( t ) d ^ ( t ) + ( B 1 − B 2 ) u ^ ( t ) d ^ ( t ) \begin{align} \nonumber <\hat{\dot{\textbf{x}}}{(t)}>_{T_S} = &\textbf{A} \hat{\textbf{x}}(t)+ \textbf{B} \hat{\textbf{u}}(t)+[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}]\hat{d}(t) \\ \nonumber & + (\textbf{A}_1-\textbf{A}_2)\hat{\textbf{x}}(t)\hat{d}(t)+(\textbf{B}_1-\textbf{B}_2)\hat{\textbf{u}}(t)\hat{d}(t) \end{align} <x˙^(t)>TS=Ax^(t)+Bu^(t)+[(A1A2)x+(B1B2)u]d^(t)+(A1A2)x^(t)d^(t)+(B1B2)u^(t)d^(t)

< y ^ ( t ) > T S = C x ^ ( t ) + E u ^ ( t ) + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] d ^ ( t ) + ( C 1 − C 2 ) x ^ ( t ) d ^ ( t ) + ( E 1 − E 2 ) u ^ ( t ) d ^ ( t ) \begin{align} \nonumber <{\hat{\textbf{y}}}{(t)}>_{T_S}=& \textbf{C} \hat{\textbf{x}}(t)+ \textbf{E} \hat{\textbf{u}}(t) +[(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}]\hat{d}(t) \\ \nonumber & + (\textbf{C}_1-\textbf{C}_2)\hat{\textbf{x}}(t)\hat{d}(t)+(\textbf{E}_1-\textbf{E}_2)\hat{\textbf{u}}(t)\hat{d}(t) \end{align} <y^(t)>TS=Cx^(t)+Eu^(t)+[(C1C2)x+(E1E2)u]d^(t)+(C1C2)x^(t)d^(t)+(E1E2)u^(t)d^(t)

对Flyback变换器,我们令:

x = [ i v ] \textbf{x}=\begin{bmatrix} i \\v \end{bmatrix} x=[iv]

u = [ v g v D ] \textbf{u}= \begin{bmatrix} v_g \\v_D \end{bmatrix} u=[vgvD]

y = [ i g v ] \textbf{y}= \begin{bmatrix} i_g \\ v \end{bmatrix} y=[igv]

则变换器的静态工作点可以求出:

x = [ I V ] = − [ R L L − 1 − d n L 1 − d n C 1 R C ] − 1 [ d L 1 − d n L 0 0 ] [ v g v D ] \textbf{x}=\begin{bmatrix} I \\V \end{bmatrix}=-\begin{bmatrix} \frac{R_L}{L} & -\frac{1-d}{nL} \\ \frac{1-d}{nC} & \frac{1}{RC} \end{bmatrix} ^{-1} \begin{bmatrix} \frac{d}{L} & \frac{1-d}{nL} \\0 & 0 \end{bmatrix} \begin{bmatrix} v_g \\v_D \end{bmatrix} x=[IV]=[LRLnC1dnL1dRC1]1[Ld0nL1d0][vgvD]

y = [ I g V ] = ( [ 0 0 0 0 ] − [ d n L 0 1 ] [ R L L − 1 − d n L 1 − d n C 1 R C ] − 1 [ d L 1 − d n L 0 0 ] ) [ v g v D ] ) \textbf{y}= \begin{bmatrix} I_g \\ V \end{bmatrix}= ( \begin{bmatrix} 0 & 0 \\0 & 0 \end{bmatrix} -\begin{bmatrix} d & {nL} \\0 & 1 \end{bmatrix}\begin{bmatrix} \frac{R_L}{L} & -\frac{1-d}{nL} \\ \frac{1-d}{nC} & \frac{1}{RC} \end{bmatrix} ^{-1} \begin{bmatrix} \frac{d}{L} & \frac{1-d}{nL} \\0 & 0 \end{bmatrix} ) \begin{bmatrix} v_g \\v_D \end{bmatrix} ) y=[IgV]=([0000][d0nL1][LRLnC1dnL1dRC1]1[Ld0nL1d0])[vgvD])

解得电感电流稳态值 I I I,输出电压 V V V,输入电流 I g I_g Ig

I = n ( V D − d V D + n d V g ) d 2 R − 2 d R + n 2 R L + R I= \frac{n(V_D - dV_D + ndV_g)}{d^2R - 2dR + n^2R_L + R} I=d2R2dR+n2RL+Rn(VDdVD+ndVg)

V = ( 1 − d ) R ( V D − d V D + n d V g ) d 2 R − 2 d R + n 2 R L + R V=\frac{(1-d)R(V_D - dV_D + ndV_g)}{d^2R - 2dR + n^2R_L + R} V=d2R2dR+n2RL+R(1d)R(VDdVD+ndVg)

I g = n d ( V D − d V D + n d V g ) d 2 R − 2 d R + n 2 R L + R I_g=\frac{nd(V_D - dV_D + ndV_g)}{d^2R - 2dR + n^2R_L + R} Ig=d2R2dR+n2RL+Rnd(VDdVD+ndVg)

则电压增益:

M = V V g = ( 1 − d ) R ( V D − d V D + n d V g ) ( d 2 R − 2 d R + n 2 R L + R ) V g M=\frac{V}{V_g}=\frac{(1-d)R(V_D - dV_D + ndV_g)}{(d^2R - 2dR + n^2R_L + R)V_g} M=VgV=(d2R2dR+n2RL+R)Vg(1d)R(VDdVD+ndVg)

理想情况时: V D = 0 , R L = 0 V_D=0,R_L=0 VD=0,RL=0则: M = V V g = n d 1 − d M=\frac{V}{V_g}=\frac{nd}{1-d} M=VgV=1dnd

线性化交流小信号方程

对于 x ˙ ^ ( t ) \hat{\dot{\textbf{x}}}(t) x˙^(t) y ^ ( t ) \hat{\text{y}}(t) y^(t)的表达式进行线性近似得到交流小信号模型:

x ˙ ^ ( t ) = A x ^ ( t ) + B u ^ ( t ) + [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] d ^ ( t ) \hat{\dot{\textbf{x}}}(t) =\textbf{A}\hat{\textbf{x}}(t)+ \textbf{B} \hat{\textbf{u}}(t)+[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}]\hat{d}(t) x˙^(t)=Ax^(t)+Bu^(t)+[(A1A2)x+(B1B2)u]d^(t)

y ^ ( t ) = C x ^ ( t ) + E u ^ ( t ) + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] d ^ ( t ) \hat{\textbf{y}}{(t)}= \textbf{C} \hat{\textbf{x}}(t)+ \textbf{E} \hat{\textbf{u}}(t) +[(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}]\hat{d}(t) y^(t)=Cx^(t)+Eu^(t)+[(C1C2)x+(E1E2)u]d^(t)

解得:
x ˙ ^ ( t ) = [ d i ^ d t d v ^ d t ] = [ R L L − 1 − d n L 1 − d n C 1 R C ] [ i ^ v ^ ] + [ d L 1 − d n L 0 0 ] [ v ^ g v ^ D ] + ( [ 0 1 n L − 1 n C 0 ] [ i v ] + [ 1 L − 1 n L 0 0 ] [ v g v D ] ) d ^ ( t ) \begin{align} \nonumber \hat{\dot{\textbf{x}}}(t)= \begin{bmatrix} \frac{d \hat i}{dt} \\ \frac{d \hat v}{dt} \end{bmatrix} = & \begin{bmatrix} \frac{R_L}{L} & -\frac{1-d}{nL} \\ \frac{1-d}{nC} & \frac{1}{RC} \end{bmatrix} \begin{bmatrix} \hat i \\ \hat v \end{bmatrix} + \begin{bmatrix} \frac{d}{L} & \frac{1-d}{nL} \\0 & 0 \end{bmatrix} \begin{bmatrix} \hat{v}_g \\ \hat v_D \end{bmatrix} \\ \nonumber & +(\begin{bmatrix} 0 & \frac{1}{nL} \\ \frac{-1}{nC} & 0 \end{bmatrix} \begin{bmatrix} i \\v \end{bmatrix} + \begin{bmatrix} \frac{1}{L} & \frac{-1}{nL} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_g \\v_D \end{bmatrix} ) \hat d(t) \end{align} x˙^(t)=[dtdi^dtdv^]=[LRLnC1dnL1dRC1][i^v^]+[Ld0nL1d0][v^gv^D]+([0nC1nL10][iv]+[L10nL10][vgvD])d^(t)

小信号分析

设二极管压降 V D V_D VD为确定值不发生变化,即: V ^ D = 0 \hat{V}_D=0 V^D=0

则: u ^ = [ v g ^ 0 ] \hat{\textbf{u}}=\begin{bmatrix} \hat{ v_g} \\0 \end{bmatrix} u^=[vg^0]

对线性化后得表达式做拉普拉斯变换,得到:

s x ^ ( s ) = A x ^ ( s ) + B u ^ ( s ) + [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] d ^ ( s ) s\hat{{\textbf{x}}}(s) =\textbf{A}\hat{\textbf{x}}(s)+ \textbf{B} \hat{\textbf{u}}(s)+[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}]\hat{d}(s) sx^(s)=Ax^(s)+Bu^(s)+[(A1A2)x+(B1B2)u]d^(s)

y ^ ( s ) = C x ^ ( s ) + E u ^ ( s ) + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] d ^ ( s ) \hat{\textbf{y}}{(s)}= \textbf{C} \hat{\textbf{x}}(s)+ \textbf{E} \hat{\textbf{u}}(s) +[(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}]\hat{d}(s) y^(s)=Cx^(s)+Eu^(s)+[(C1C2)x+(E1E2)u]d^(s)

联立方程,解得:

x ^ ( s ) = ( s I − A ) − 1 B u ^ ( s ) + ( s I − A ) − 1 [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] d ^ ( s ) \hat{{\textbf{x}}}(s) = (s\textbf{I}-A)^{-1} \textbf{B} \hat{\textbf{u}}(s)+(s\textbf{I}-A)^{-1}[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}]\hat{d}(s) x^(s)=(sIA)1Bu^(s)+(sIA)1[(A1A2)x+(B1B2)u]d^(s)

y ^ ( s ) = ( C ( s I − A ) − 1 B + E ) u ^ ( s ) + { C ( s I − A ) − 1 [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] } d ^ ( s ) \begin{align} \nonumber \hat{\textbf{y}}{(s)}= (\textbf{C}(s\textbf{I}-A)^{-1} \textbf{B} +\textbf{E}) \hat{\textbf{u}}(s) + \{ \textbf{C}(s\textbf{I}-A)^{-1}[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}] + \\ \nonumber [(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}]\} \hat{d}(s) \end{align} y^(s)=(C(sIA)1B+E)u^(s)+{C(sIA)1[(A1A2)x+(B1B2)u]+[(C1C2)x+(E1E2)u]}d^(s)

得到四个传递函数:

当控制变量无扰动时,可得状态变量 X ^ ( s ) \hat{\textbf{X}}(s) X^(s)对输入变量 v ^ g ( s ) \hat{v}_g(s) v^g(s)的传递函数:

G ( s ) = X ^ ( s ) v ^ g ( s ) ∣ d ^ ( s ) = 0 = ( S I − A ) − 1 B G(s)=\frac{\hat{\textbf{X}}(s)}{\hat{v}_g(s)}|_{\hat{d}(s)=0}= (S\textbf{I}-A)^{-1} \textbf{B} G(s)=v^g(s)X^(s)d^(s)=0=(SIA)1B

当输入向量无扰动时,可得状态变量 X ^ ( s ) \hat{\textbf{X}}(s) X^(s)对控制变量 d ^ ( s ) \hat{d}(s) d^(s)的传递函数:

G ( s ) = X ^ ( s ) d ^ ( s ) ∣ v ^ g ( s ) = 0 = ( S I − A ) − 1 [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] G(s)=\frac{\hat{\textbf{X}}(s)}{\hat{d}(s)}|_{\hat{v}_g(s)=0}= (S\textbf{I}-A)^{-1}[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}] G(s)=d^(s)X^(s)v^g(s)=0=(SIA)1[(A1A2)x+(B1B2)u]

当控制量无扰动时,可得输出变量 y ^ ( s ) \hat{\textbf{y}}(s) y^(s)对输入变量 v ^ g ( s ) \hat{v}_g(s) v^g(s)的传递函数:

G ( s ) = y ^ ( s ) v ^ g ( s ) ∣ d ^ ( s ) = 0 = C ( S I − A ) − 1 B + E G(s)=\frac{\hat{\textbf{y}}(s)}{\hat{v}_g(s)}|_{\hat{d}(s)=0} = \textbf{C}(S\textbf{I}-A)^{-1} \textbf{B} +\textbf{E} G(s)=v^g(s)y^(s)d^(s)=0=C(SIA)1B+E

当输入向量无扰动时,可得输出变量 y ^ ( s ) \hat{\textbf{y}}(s) y^(s)对控制变量 d ^ ( s ) \hat{d}(s) d^(s)的传递函数:
G ( s ) = y ^ ( s ) d ^ ( s ) ∣ v ^ g ( s ) = 0 = C ( S I − A ) − 1 [ ( A 1 − A 2 ) x + ( B 1 − B 2 ) u ] + [ ( C 1 − C 2 ) x + ( E 1 − E 2 ) u ] \begin{align} \nonumber G(s)=\frac{\hat{\textbf{y}}(s)}{\hat{d}(s)}|_{\hat{v}_g(s)=0}= \textbf{C}(S\textbf{I}-A)^{-1}[(\textbf{A}_1-\textbf{A}_2)\textbf{x}+(\textbf{B}_1-\textbf{B}_2)\textbf{u}] + \\ \nonumber [(\textbf{C}_1-\textbf{C}_2)\textbf{x}+(\textbf{E}_1-\textbf{E}_2)\textbf{u}] \end{align} G(s)=d^(s)y^(s)v^g(s)=0=C(SIA)1[(A1A2)x+(B1B2)u]+[(C1C2)x+(E1E2)u]

matlab计算代码

clc
clear
close all
syms  i v RL L d n C R Vg VD  S %A1 B1 C1 E1 A2 B2 C2 E2 

A1=[-(RL)/L 0 ; 0 -1/(R*C)];
B1 = [1/L 0 ; 0 0];
C1 = [1 0 ; 0 1];
E1 = [0 0 ; 0 0];

A2 = [-RL/L -1/(n*L) ; 1/(n*C) -1/(R*C)];
B2 = [ 0 1/(n*L);0 0];
C2 = [0 0 ; 0 1];
E2= [0 0 ; 0 0 ];
u = [Vg ; VD];
x = [i ; v];

A = simplify(d*A1+(1-d)*A2)
B = simplify(d*B1+(1-d)*B2)
C = simplify(d*C1 +(1-d)*C2)
E = simplify(d*E1 + (1-d)*E2)

x2 = simplify(A*x + B*u)
x1 = simplify(- inv(A) * B *[Vg ;VD])
y=simplify((E -C * inv(A) * B )*[Vg;VD])

G = simplify( C*inv(S*eye(2) - A)* ((A1 - A2)*x1 + (B1-B2)* u ) + ((C1-C2)*x1 + (E1 - E2)*u ))

参考文献

开关变换器建模——状态空间平均法文章来源地址https://www.toymoban.com/news/detail-659605.html

到了这里,关于状态空间平均建模——Flyback的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包