在树莓派中跑迷你Llama2中文模型

这篇具有很好参考价值的文章主要介绍了在树莓派中跑迷你Llama2中文模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  OpenAI的Karpathy利用周末搞了一个迷你Llama2项目llama2.c用500行C语言实现无任何依赖项的推理程序,此项目在github发布以来衍生出了基于各种语言的迷你Llama推理实现llama2.go、llama2.java、llama2.py等等;
  但该项目原本的模型并不支持中文,最近正好看到一个基于llama2的中文训练模型;想着把它跑在树莓派上速度会怎样;
  使用Go实现进行模型推理,该在树莓派中的Llama2 迷你中文模型,模型大小为15M使用的数据集为TinyStories 英文翻译后的数据但仅翻译了TinyStories 的部分数据目前为1M,中文词表使用UTF-8编码所以每个汉字为3个字节;

在树莓派中推理:

 ./llama2.go -checkpoint=stories15M-llama2-enzh.bin -tokenizer=tokenizer.bin -prompt="有个小姑娘" 
2023/08/20 15:43:55 config: llama2.Config{Dim:288, HiddenDim:768, NumLayers:6, NumHeads:6, NumKVHeads:6,VocabSize:55296, SeqLen:256}
 有个小姑娘。她正忙着在公园里玩耍。突然,她摔倒了,膝盖受伤了。她需要举起膝盖。
 她的父母提醒她保持冷静,然后乔把她救回她的安全位置。他们给了她一些创可贴,并告诉她会帮助她感觉好一点。
 小乔紧紧地抱住膝盖,微笑着。她相信她的父母会帮助她感觉更好。
 最终,收拾好竭,她的膝盖感觉好多了。她很高兴能能够再次感到安全。

  可以看到在树莓派中跑这个150万参数的llama2模型Tokens/s速度只有每秒不到10;
  由于TinyStories只是短篇故事数据集,加上中文翻译数据集也不完全,模型参数也只有百万规模所以讲故事的效果并不好;

在树莓派中跑迷你Llama2中文模型

Go推理fork于:https://github.com/nikolaydubina/llama2.go
模型、词表来源:https://github.com/chenyangMl/llama2.c-zh
文章首发地址:https://mp.weixin.qq.com/s/3jHg6kYFnd45JUZq9WK3sw文章来源地址https://www.toymoban.com/news/detail-659836.html

到了这里,关于在树莓派中跑迷你Llama2中文模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [玩转AIGC]LLaMA2训练中文文章撰写神器(数据准备,数据处理,模型训练,模型推理)

    好久没更新这个专栏的文章了,今天抽空写了一篇。————2023.12.28 摘要:文体包括新闻,法律文书,公告,广告等,每种文体的书写风格不一样,如果拥有自己的数据集,想针对特定文体来训练一个内容生成的工具,来帮助自己写点文章,如果没接触过AIGC,可能一开始会

    2024年01月17日
    浏览(52)
  • 【AI实战】开源中文 llama2 来了,30 分钟搭建 130 亿参数大模型 Llama2-Chinese-13b-Chat

    Llama2 2023年7月19日:Meta 发布开源可商用模型 Llama2。 Llama2 是一个预训练和微调的生成文本模型的集合,其规模从70亿到700亿个参数不等。 LLaMA2 的详细介绍可以参考这篇文章:【大模型】更强的 LLaMA2 来了,开源可商用、与 ChatGPT 齐平 Llama2-Chinese Llama2中文社区 Llama2-Chinese Git

    2024年02月12日
    浏览(42)
  • 大模型部署手记(11)LLaMa2+Chinese-LLaMA-Plus-2-7B+Windows+llama.cpp+中文对话

    组织机构:Meta(Facebook) 代码仓:GitHub - facebookresearch/llama: Inference code for LLaMA models 模型:LIama-2-7b-hf、Chinese-LLaMA-Plus-2-7B   下载:使用huggingface.co和百度网盘下载 硬件环境:暗影精灵7Plus Windows版本:Windows 11家庭中文版 Insider Preview 22H2 内存 32G GPU显卡:Nvidia GTX 3080 Laptop (1

    2024年02月03日
    浏览(50)
  • 大模型部署手记(9)LLaMa2+Chinese-LLaMA-Plus-7B+Windows+llama.cpp+中文文本补齐

    组织机构:Meta(Facebook) 代码仓:GitHub - facebookresearch/llama: Inference code for LLaMA models 模型:llama-2-7b、Chinese-LLaMA-Plus-7B(chinese_llama_plus_lora_7b)   下载:使用download.sh下载 硬件环境:暗影精灵7Plus Windows版本:Windows 11家庭中文版 Insider Preview 22H2 内存 32G GPU显卡:Nvidia GTX 3080 La

    2024年02月03日
    浏览(51)
  • 将 Llama2 中文模型接入 FastGPT,再将 FastGPT 接入任意 GPT 套壳应用,真刺激!

    FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景! Llama2 是Facebook 母公司 Meta 发布的开源可商用大模型,国内的开源社区以及个人和机构也纷纷着手基于 Ll

    2024年02月10日
    浏览(42)
  • 国内最大Llama开源社区发布首个预训练中文版Llama2

    \\\" 7月31日,Llama中文社区率先完成了国内 首个真正意义上的中文版Llama2-13B大模型 ,从模型底层实现了Llama2中文能力的大幅优化和提升。毋庸置疑,中文版Llama2一经发布将开启国内大模型新时代! | 全球最强,但中文短板 Llama2是当前全球范围内最强的开源大模型,但其中文能

    2024年02月13日
    浏览(37)
  • 基于Llama2模型的开源模型

      2023年7月18日Meta开源了Llama2,在2万亿个Token上训练,可用于商业和研究,包括从7B到70B模型权重、预训练和微调的代码。相比Llama1,Llama2有较多提升,评估结果如下所示: 基于Llama2模型的开源模型如下所示: 1.WizardCoder Python V1.0 2.Phind Code Llama v1 3.WizardLM 70B V1.0 4.Dophin Llam

    2024年02月10日
    浏览(42)
  • 逐行对比LLaMA2和LLaMA模型源代码

    几个小时前(2023年7月18日),Meta发布了允许商用的开源模型LLaMA2。笔者逐行对比了LLaMA2模型源代码,和LLaMA相比,几乎没有改动,细节如下: 是否改动 LLaMA2 LLaMA 模型整体构架 无 Transformer Transformer 规范化函数 无 均方根规范化(RMSNorm) 均方根规范化(RMSNorm) 位置编码 无

    2024年02月16日
    浏览(54)
  • 大模型Llama2部署,基于text-generation-webui、Llama2-Chinese

    参考安装教程:傻瓜式!一键部署llama2+chatglm2,集成所有环境和微调功能,本地化界面操作! Github地址:GitHub - oobabooga/text-generation-webui: A Gradio web UI for Large Language Models. Supports transformers, GPTQ, llama.cpp (ggml/gguf), Llama models. 模型下载地址:meta-llama/Llama-2-13b-chat-hf at main 遇到的问

    2024年02月08日
    浏览(47)
  • LLMs之LLaMA2:基于云端进行一键部署对LLaMA2模型实现推理(基于text-generation-webui)执行对话聊天问答任务、同时微调LLaMA2模型(配置云端环境【A100】→下载数

    LLMs之LLaMA-2:基于云端进行一键部署对LLaMA2模型实现推理(基于text-generation-webui)执行对话聊天问答任务、同时微调LLaMA2模型(配置云端环境【A100】→下载数据集【datasets】→加载模型【transformers】→分词→模型训练【peft+SFTTrainer+wandb】→基于HuggingFace实现云端分享)之图文教程详

    2024年02月11日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包