opencv实战项目 手势识别-手势音量控制(opencv)

这篇具有很好参考价值的文章主要介绍了opencv实战项目 手势识别-手势音量控制(opencv)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等。

手势识别系列文章

1.opencv实现手部追踪(定位手部关键点)

2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)

3.手势识别-手势音量控制(opencv)

4.opencv实战项目 手势识别-手势控制鼠标

未完待续...

opencv实战项目 手势识别-手势音量控制(opencv),opencv实战,opencv,人工智能,计算机视觉

 代码需要用到opencv   HandTraqckModule模块   mediapipe模块和一个音量控制模块

AndreMiras/pycaw: Python Core Audio Windows Library (github.com) 音量控制模块的作者,有兴趣可以了解

手部追踪模块来自前期的我们实战内容opencv 实现手势跟踪并返回位置信息(封装调用)_陈子迩的博客-CSDN博客

opencv实战项目 手势识别-手势音量控制(opencv),opencv实战,opencv,人工智能,计算机视觉

下面给大家详细说一下代码

import cv2
import time
import numpy as np
from HandTraqckModule import *
import math
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume

这些行导入了所需的库和模块:

  • cv2: OpenCV 库,用于图像处理和显示。
  • time: Python 标准库,用于处理时间操作。
  • numpy: 数值计算库,用于插值计算。
  • HandTraqckModule: 自定义的手部追踪模块(你的代码中似乎有个拼写错误,正确的应该是 HandTrackModule)。
  • math: Python 标准库,用于数学计算。
  • comtypes: 用于处理 COM 接口的库。
  • pycaw: 用于访问 Windows 音频控制接口的库。
  • devices = AudioUtilities.GetSpeakers()
    interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
    volume = interface.QueryInterface(IAudioEndpointVolume)
    volRange = volume.GetVolumeRange()
    minVol = volRange[0]
    maxVol = volRange[1]
    
  • 这部分代码获取了默认音频输出设备的信息,并通过 pycaw 库设置了音量范围、最小音量和最大音量。

  • wCam, hCam = 1280, 720
    cap = cv2.VideoCapture(0)
    cap.set(3, wCam)
    cap.set(4, hCam)
    

    这里设置了摄像头的分辨率,并通过 OpenCV 打开摄像头。

pTime = 0
detector = handDetector(detectionCon=0.7)

初始化了上一帧的时间 pTime,并创建了 handDetector 类的实例 detector,设置了手势检测的置信度阈值为 0.7。

while True:
    success, img = cap.read()
    img = detector.findHands(img)
    lmList = detector.findPosition(img, draw=False)

    if len(lmList) != 0:
        # 从手部标记点列表中获取两个指尖的坐标
        x1, y1 = lmList[4][1], lmList[4][2]
        x2, y2 = lmList[8][1], lmList[8][2]
        cx, cy = (x1 + x2) // 2, (y1 + y2) // 2

        # 绘制手势标记和连接线
        cv2.circle(img, (x1, y1), 15, (255, 255, 0), cv2.FILLED)
        cv2.circle(img, (x2, y2), 15, (255, 0, 0), cv2.FILLED)
        cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 3)
        cv2.circle(img, (cx, cy), 10, (255, 255, 0), cv2.FILLED)

        # 计算手势长度
        length = math.hypot(x2 - x1, y2 - y1)

        # 映射手势长度到音量范围
        vol = np.interp(length, [10, 230], [minVol, maxVol])
        print(int(length), int(vol))

        # 设置系统音量
        volume.SetMasterVolumeLevel(vol, None)

        # 如果手势长度小于一定阈值,绘制一个圆圈表示手势过小
        if length < 50:
            cv2.circle(img, (cx, cy), 15, (255, 100, 100), cv2.FILLED)

    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime

    # 绘制帧率信息
    cv2.putText(img, f'FPS:{int(fps)}', (40, 40), cv2.FONT_HERSHEY_PLAIN, 3, (255, 255, 0), 3)

    # 显示图像
    cv2.imshow('img', img)
    cv2.waitKey(1)

这部分代码是主要的处理循环,它会不断地从摄像头捕获图像,然后使用 detector 对象进行手部检测和标记绘制。随后,通过手指标记点的坐标计算手势的长度,并将这个长度映射到音量范围,然后设置系统音量。如果手势长度小于阈值,会在图像上绘制一个圆圈来表示手势过小。最后,还会绘制帧率信息并显示图像。

下面附上全部代码

总体代码文章来源地址https://www.toymoban.com/news/detail-660564.html

import cv2
import time
import numpy as np
from HandTraqckModule import *
import math
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume

# 获取默认音频输出设备
devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume = interface.QueryInterface(IAudioEndpointVolume)
# 获取音量范围
volRange = volume.GetVolumeRange()
minVol = volRange[0]
maxVol = volRange[1]

# 设置摄像头分辨率
wCam, hCam = 1280, 720

# 打开摄像头
cap = cv2.VideoCapture(0)
cap.set(3, wCam)
cap.set(4, hCam)

pTime = 0
detector = handDetector(detectionCon=0.7)

while True:
    success, img = cap.read()
    img = detector.findHands(img)
    lmList = detector.findPosition(img, draw=False)

    if len(lmList) != 0:
        x1, y1 = lmList[4][1], lmList[4][2]
        x2, y2 = lmList[8][1], lmList[8][2]
        cx, cy = (x1 + x2) // 2, (y1 + y2) // 2

        # 绘制手势标记和连接线
        cv2.circle(img, (x1, y1), 15, (255, 255, 0), cv2.FILLED)
        cv2.circle(img, (x2, y2), 15, (255, 0, 0), cv2.FILLED)
        cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 3)
        cv2.circle(img, (cx, cy), 10, (255, 255, 0), cv2.FILLED)

        # 计算手势长度
        length = math.hypot(x2 - x1, y2 - y1)

        # 映射手势长度到音量范围
        vol = np.interp(length, [10, 230], [minVol, maxVol])
        print(int(length), int(vol))

        # 设置系统音量
        volume.SetMasterVolumeLevel(vol, None)

        # 如果手势长度小于一定阈值,绘制一个圆圈表示手势过小
        if length < 50:
            cv2.circle(img, (cx, cy), 15, (255, 100, 100), cv2.FILLED)

    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime

    # 绘制帧率信息
    cv2.putText(img, f'FPS:{int(fps)}', (40, 40), cv2.FONT_HERSHEY_PLAIN, 3, (255, 255, 0), 3)

    # 显示图像
    cv2.imshow('img', img)
    cv2.waitKey(1)

到了这里,关于opencv实战项目 手势识别-手势音量控制(opencv)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv实战项目 手势识别-手势控制键盘

    手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1.  opencv实现手部追踪(定位手部关键点) 2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用) 3.opencv实战项目 手势识别-手势控制鼠标 4.opencv实战

    2024年02月13日
    浏览(42)
  • OpenCV实现手势音量控制

    前言: Hello大家好,我是Dream。 今天来学习一下 如何使用OpenCV实现手势音量控制 ,欢迎大家一起前来探讨学习~ 本次实验需要使用OpenCV和mediapipe库进行手势识别,并利用手势距离控制电脑音量。 导入库: cv2:OpenCV库,用于读取摄像头视频流和图像处理。 mediapipe:mediapipe库,

    2024年02月05日
    浏览(51)
  • mediapipe 手势节点识别自动控制音量

    参考:https://www.computervision.zone/topic/volumehandcontrol-py/ 主函数: VolumeHandControl.py

    2024年02月11日
    浏览(42)
  • Python Opencv实践 - 手势音量控制

        本文基于前面的手部跟踪功能做一个手势音量控制功能,代码用到了前面手部跟踪封装的HandDetector.这篇文章在这里: Python Opencv实践 - 手部跟踪-CSDN博客 文章浏览阅读626次,点赞11次,收藏7次。使用mediapipe库做手部的实时跟踪,关于mediapipe的介绍,请自行百度。 https://bl

    2024年02月04日
    浏览(42)
  • [ Python+OpenCV+Mediapipe ] 实现手势控制音量

    目录 一、写在前面 二、本文内容 三、开发环境  四、代码实现 4.1引入所需包 4.2 定义一个类并初始化 4.3 定义绘制一界面并实现音量控制的主方法 五、看一看实际效果吧 六、完整代码 七、小结  八、感谢        本文所用例子为个人学习的小结,如有不足之处请各位多多

    2024年02月22日
    浏览(56)
  • 用手势操控现实:OpenCV 音量控制与 AI 换脸技术解析

    HandTrackingModule.py 定义了一个名为 handDetector 的类,用于检测和跟踪手部。下面是代码的详细分析: 导入库 cv2 : OpenCV 库,用于图像处理。 mediapipe as mp : 用于多媒体解决方案的库,在此用于手部检测。 time : 用于时间管理,但在给定的代码段中未使用。 handDetector 类 初始化方法

    2024年02月11日
    浏览(36)
  • OpenCV实现手势音量控制 报错日志 INFO: Created TensorFlow Lite XNNPACK delegate for CPU.

    👋 Hi, I’m @货又星 👀 I’m interested in … 🌱 I’m currently learning … 💞️ I’m looking to collaborate on … 📫 How to reach me … README 目录(持续更新中) 各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱

    2024年02月05日
    浏览(71)
  • OpenCV C++案例实战二十二《手势识别》

    本文将使用OpenCV C++ 实现手势识别效果。本案例主要可以分为以下几个步骤: 1、手部关键点检测 2、手势识别 3、效果显示 接

    2024年02月05日
    浏览(85)
  • 用python实现实现手势音量控制

    要实现手势音量控制,您可以使用Python中的PyAutoGUI和pynput库。PyAutoGUI可以模拟鼠标和键盘操作,而pynput可以检测用户的输入事件。 以下是一个简单的示例代码,可以实现通过手势控制音量的功能: python复制代码 import pyautogui import pynput.mouse as mouse import pynput.keyboard as keyboard

    2024年01月19日
    浏览(49)
  • OpenCV+python实现摄像头简单手势识别--进度条控制亮度

    例如:随着人工智能的不断发展,计算机视觉这门技术也越来越重要,很多人都开启了学习计算机视觉,本文在Opencv基础上实现了摄像头简单手势识别–进度条控制亮度的基础内容,并没有使用深度学习技术,因此准确率并不高。 ∙ bullet ∙ 第一步: 开启摄像头,检测每帧图

    2023年04月08日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包